Prerequisites

Programming: Python: Source, Pytorch: Source.

Software and Packages: Anaconda, Jupyter notebook



Books

The Majority of the course content follows from the first references.

1. RAS - Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili. Machine Learning with PyTorch and Scikit-Learn.

2. SKL - Scikit-Learn

3. LIY - Yuxi (Hayden) Liu. Python Machine Learning By Example, Third-Edition.

4. MG - Andreas C. Müller, Sarah Guido. Introduction to Machine Learning with Python



Tentative Schedule

Week Topic Reading Notebooks and Assignments
1 Python Basics
  • Lab 1 resources
  • 2 Perceptron, SVM Perceptron and SVM sections from Chapter 3 of RAS.
  • Lab 2 resources
  • 3 Probability, Statistics, Pandas, Matplotlib SKL, Scipy docs, Numpy docs, Pandas docs, Matplotlib docs
  • Lab 3 resources
  • 4 Bayesian Classifier, Naive Bayes
  • Lab 5 resources
  • 5 Linear Regression
    6 Bias/Variance Tradeoff
    7 Decision Tree
    8 PCA
    9 Perceptron
    10 SVM, Kernilization
    11 MLP
    12 Clustering