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Abstract

Given a family A of subsets of [n], n ∈ N, finding another family of optimal size

satisfying a certain relationship with sets in A constitute a class of problems studied

in extremal combinatorics. This class includes the set cover problem, the problem of

separating families and its variants [59, 38, 71], and the test cover problem [50, 32, 21].

Another class of well studied problems is “Covering the {0, 1}n Hamming cube with the

minimum number of affine hyperplanes” - a point x ∈ {0, 1}n is said to be covered by a

hyperplane H(a, b) if 〈a, x〉 = b (see [2, 43, 66, 65]). Viewing the elements of a family

A as the points of the {0, 1}n Hamming cube and putting restrictions on the covering

hyperplanesH(a, b), the covering hyperplanes correspond to a family B with interesting

combinatorial connections with A. In this thesis, we study few such connections, their

variants and the underlying minimization problems.

Let A be a family of subsets of [n], where [n] = {1, . . . , n}. For any set A ⊆ [n],

let A denote the complement set of A, i.e. A = [n] \ A. Given a D ⊆ {−n,−n +

1, . . . , 0, . . . , n}, we say a family B is D-secting for A if for each subset A ∈ A, there

exists a subset B ∈ B such that |A ∩ B| − |A ∩ B| = i, where i ∈ D. A D-secting

family B of A, where D = {−1, 0, 1}, is a bisecting family ensuring the existence of

a subset B ∈ B such that |A ∩ B| ∈ {d |A|2 e, b
|A|
2 c}, for each A ∈ A. Let βD(A)

denote the minimum cardinality of a D-secting family for A. Observe that if D = {i},

only those sets A ∈ A for which |A| ≡ i (mod 2) and |A| ≥ i can attain a value of i

for |A ∩ B| − |A ∩ B|. So, we consider only those sets A in the family A for which

|A| ≡ i (mod 2) and |A| ≥ i, when D = {i}. We define βD(n) as

βD(n) = max
A

βD(A).

Let Y denote a±1 bicoloring of elements of [n], i.e. Y : [n]→ {+1,−1}. We abuse

the notation to denote the subset of [n] colored with +1 (-1) with respect to bicoloring Y



as Y (+1) (respectively, Y (−1)). Note that to describe a bicoloring of [n], it suffices to

specify either Y (+1) or Y (−1). AllowingB = Y (+1), for any A ⊆ [n], |A∩B|−|A∩

B| is equivalent to |A ∩ Y (+1)| − |A ∩ Y (−1)| (this is called as discrepancy of A with

respect to bicoloring Y ). Therefore, |A ∩ B| − |A ∩ B| can represent the difference of

+1 colored points and -1 colored points in any A with respect to a bicoloring Y , where

Y (+1) = B. This connection to discrepancy also leads to the following reformulation

in terms of covering the {0, 1}n Hamming cube.

For any subset A ⊆ [n], let (i) XA = (x1, . . . , xn) ∈ {0, 1}n be the incidence vector

such that xi = 1 if and only if i ∈ A; and, (ii)YA = (y1, . . . , yn) ∈ {−1, 1}n be the

incidence vector such that yi = 1 if and only if i ∈ A. Observe that for any two subsets

A and B of [n], the dot product of XA = (x1, . . . , xn) with YB = (y1, . . . , yn), denoted

by 〈XA, YB〉, is equivalent to |A∩B| − |A∩B|. Therefore, βD(n) may be alternatively

defined as the minimum cardinality of a familyH of structures H(a,D) such that

1. a ∈ {−1,+1}n for each H(a,D);

2. each H(a,D) is a collection of |D| hyperplanes H(a, i), i ∈ D;

3. a point x ∈ {0, 1}n is said to be covered by some H(a,D) if 〈a, x〉 ∈ D;

4. for each x ∈ {0, 1}n, there exists some H(a,D) ∈ H that covers x.

Varying the domain of a, D, and x leads to various kinds of combinatorial question

(see Table 1). When a is restricted to the domain of {−1, 0,+1}n with exactly d nonzero

coordinates (combinatorially, this can be viewed as a partial bicoloring of d out of n

points), andD = {0}, the covering problem of the {0, 1}n Hamming cube translates into

a special kind of D-secting family problem - “the Induced bisection problem”. When

the {0, 1}n Hamming cube is replaced with the {−1,+1}n Hamming cube, a ∈ {0, 1}n,

and D = {0}, the covering problem reduces to an inverse-D-secting family problem -

“ the System of unbiased representatives (SUR) problem”. In the thesis, we study each

of these notions in detail and establish bounds on cardinalities of such families.



x a D ⊆ {−n, . . . , n} combinatorial property
{0, 1}n {−1, 1}n D D-section
{0, 1}n {−1, 0, 1}n with d non-zeros {0} induced bisection
{−1, 1}n {0, 1}n {0} SUR

Table 1: Various combinatorial notions corresponding to alterations in x, a and D.

Let Ae be a family of subsets of [n] where each A ∈ Ae has an even cardinality.

Recall that when D is restricted to the set {0}, any D-secting family B for A becomes

a bisecting family for Ae: for each subset A ∈ A, there exists a subset B ∈ B such

that |A ∩ B| = |A|
2 . We have the following one family extension of the bisecting family

notion. A family F of subsets of [n] is called bisection closed if for each pairA,B ∈ F ,

either A bisects B or B bisects A. We study extremal question regarding bisection

closed families in detail and establish bounds on cardinalities of such families. We also

study the problem of computation of bisecting families for products of families A for

which β[±1](A) is known.

Keywords: discrepancy, hypergraphs, separating family, bisecting families, Hamming

cube, covering, hyperplane, hypergraph bicoloring, hitting set, test cover, unbiased rep-

resentatives





Chapter 1

Introduction

Extremal combinatorics is an important and rapidly developing area of Mathematics. It

deals with problems of estimating the maximum (or minimum) size of a collection of

some combinatorial objects such as sets, graphs or numbers, under certain restrictions.

Some classical questions in extremal combinatorics include

• Túran’s problem: What is the maximum number of edges in n vertex graph that

does not contain a clique of size r, for some 2 ≤ r ≤ n?

• Ramsey theoretic problem: What is the minimum n such that any bicoloring of

edges of a Kn contains large monochromatic cliques?

• Erdós distinct distance problem: What is the minimal number of distinct distances

between n points in a plane for any n ∈ N?

Such problems often have direct applications to various fields of computer science in-

cluding data structures, information theory, computer vision, robotics, bioinformatics,

number theory, and cryptography. For instance, Chebyshev’s proof of the ‘Prime num-

ber theorem’ on computing the number of primes less than n for any n ∈ N uses double

counting in establishing both the lower bound as well the upper bound (see [67, chapter

5.1]). Moreover, deep connections between combinatorics and the ‘mainstream’ areas

of mathematics like algebra, geometry, probability theory has been realized over the

1



1.1. D-secting families

years. For instance, Brouwer’s fixed-point theorem [15, 31] can be proved using the

classical Sperner’s lemma combined with an elegant pigeonhole argument (see [77]).

Given a family F of subsets of [n], n ∈ N, finding another family of optimal size

satisfying certain relationships with sets in F constitutes a class of problems studied

in extremal combinatorics. This class includes the set cover and related problems, the

problems of separating families [59, 38, 71], and the test cover problem [50, 32, 21]. In

the next section, we state the central problem addressed in this thesis.

1.1 D-secting families

Let A be a family of subsets of [n], where [n] = {1, . . . , n}. Another family B of

subsets of [n] is called a bisecting family for A, if for each subset A ∈ A, there exists a

subset B ∈ B such that |A ∩B| ∈ {d |A|2 e, b
|A|
2 c}. What is the minimum cardinality of a

bisecting family for any family A? For any set A ⊆ [n], let A denote the complement

set of A, i.e. A = [n] \ A. We pose a more general problem based on the difference

between |A ∩ B| and |A ∩ B|. We say a family B is D-secting for A if for each subset

A ∈ A, there exists a subset B ∈ B such that |A ∩ B| − |A ∩ B| = i, where i ∈ D,

D ⊆ {−n,−n + 1, . . . , 0, . . . , n}. Let βD(A) denote the minimum cardinality of a

D-secting family for A. Observe that if D = {i}, only those sets A ∈ A for which

|A| ≡ i (mod 2) and |A| ≥ i can attain a value of i for |A ∩ B| − |A ∩ B|. So, we

consider only those sets A in the family A for which |A| ≡ i (mod 2) and |A| ≥ i,

when D = {i}. We define βD(n) as the maximum of βD(A) over all families A on [n]

and βD(n, k) as the maximum of βD(A) over all families A ⊆
(

[n]
k

)
. When D = {i}

(D = {−i,−i+ 1, . . . , i}), we sometimes abuse the notation to denote βD(A) by βi(A)

(respectively, β[±i](A)).

2



1.1. D-secting families

Significance of |A ∩B| − |A ∩B|

Let Y denote a ±1 bicoloring of elements of [n], i.e. Y : [n] → {+1,−1}. We abuse

the notation to denote the subset of [n] colored with +1 (-1) with respect to bicoloring

Y as Y (+1) (respectively, Y (−1)). Note that to describe a bicoloring of [n], it suffices

to specify either Y (+1) or Y (−1). Allowing B = Y (+1), for any A ⊆ [n], |A ∩ B| −

|A ∩ B| is equivalent to |A ∩ Y (+1)| − |A ∩ Y (−1)|. Therefore, |A ∩ B| − |A ∩ B|

represents the difference of the number of points colored +1 and -1 in any set A with

respect to a bicoloring Y , where Y (+1) = B.

In various practical scenarios, it is required to minimize
∣∣∣|A ∩B| − |A ∩B|∣∣∣. How-

ever, given a k-uniform family A of subsets of [n], finding a single B ⊆ [n], with

|A ∩ B| − |A ∩ B| ∈ D, D = {−k + 1, . . . , k − 1}, for each A ∈ A directly reduces

to a hypergraph bicolorability problem of k-uniform hypergraphs which is known to be

NP-complete[45, 27]. Thus, finding a single B ⊆ [n] even with almost all allowable

values for D is computationally very hard. So, it is natural to allow multiple B’s (or bi-

colorings) to ensure |A∩B|− |A∩B| ∈ D for some B ∈ B, D ⊆ {−n+1, . . . , n−1}.

This collection of B’s (bicolorings) naturally maps to a D-secting family B for A. We

analyze the interplay between the set of allowable values of |A ∩B| − |A ∩B| (i.e, D)

and the cardinality of a D-secting family (i.e. |B|). We provide a simple application of

the study of D-secting families.

Example 1.1 (Network Management) Consider a network of 10000 persons, and say,

a million groups of persons. Each group is a subset of the set of persons. Each person

can perform only one of two tasks in a day: either she can collect data or she can ana-

lyze data. For optimal operation in any group, it is advisable that the number of persons

collecting data is equal to the number of persons analyzing data. However, we allow

slight imbalances, whereby each group can operate provided the difference between the

number of persons collecting data and the number of persons analyzing data is less than

(say) 210, a tolerance limit. Now given this network, a scheduler has to assign tasks

3



1.2. Bisection with restrictions

to persons satisfying the above constraints for a number of days, so that each group is

deployed on at least one day. Note that the groups deployed for a day with tolerance 210

may be overlapping; in such cases, on that day, persons belonging to multiple groups

will perform the same assigned task for the day in each group she belongs to. We wish

to estimate the number of days required for such deployment of groups. It turns out that

we can do this certainly within 10 days, irrespective of the composition of the million

groups!

Hamming cube and an alternate formulation

For any subset A ⊆ [n], let (i) XA = (x1, . . . , xn) ∈ {0, 1}n be the incidence vector

such that xi = 1 if and only if i ∈ A; and, (ii)YA = (y1, . . . , yn) ∈ {−1, 1}n be

the incidence vector such that yi = 1 if and only if i ∈ A. Observe that for any two

subsets A and B of [n], the dot product of XA = (x1, . . . , xn) with YB = (y1, . . . , yn),

denoted by 〈XA, YB〉, is equivalent to |A ∩ B| − |A ∩ B|. The weight of a vector

R = (x1, . . . , xn) ∈ {0, 1}n (or {−1,+1}n) is the number of xj’s which are 1 (resp.,

-1), 1 ≤ j ≤ n. Vector R ∈ {0, 1}n is even (resp., odd) if the number of 1’s in R is

even (resp., odd). Given the n-dimensional Hamming cube {0, 1}n andD = {−1, 0, 1},

βD(n) is the minimum cardinality of a set V of n-dimensional {−1, 1} vectors such that

every point X ∈ {0, 1}n of even weight of the Hamming cube has some V ∈ V which

is orthogonal to X .

In Chapter 3, we consider this problem of Bisecting families and D-secting families

along with its variation and restrictions in detail.

1.2 Bisection with restrictions

In the problem discussed in Example 1.1, suppose a further restriction is added: the

scheduler cannot schedule more than 10 persons at a time and now he must ensure that

for every group, there exists a day in which among the scheduled persons, there are

4



1.2. Bisection with restrictions

exactly same number of persons collecting and analyzing data. What is the minimum

number of days the scheduler must use for the worst case input network? This problem

can be formalized as follows. Let G be a hypergraph on the vertex set [n]. Let Y S

denote a ±1 bicoloring of vertices of S ⊆ [n], i.e. Y S : S → {+1,−1}, for some

S ⊆ [n]. We abuse the notation to denote the subset of vertices colored with +1 (-1)

with respect to bicoloring Y S as Y S(+1) (resp., Y S(−1)). For a hyperedge A ∈ E(G),

let A|S denote A ∩ S - the hyperedge A induced on the subset S ⊆ [n]. A hyperedge

A ∈ E(G) is said to induced bisected by a bicoloring Y S of a subset S ⊆ V (G), if

|A|S| 6= 0 and |A|S ∩ Y S(+1)| = |A|S ∩ Y S(−1)|. It is not hard to see that the empty

set and the singleton sets can never be induced bisected by a bicoloring. Additionally,

the set [n] cannot be induced bisected by a bicoloring consisting of exactly d colored

points, when d is odd. We call the empty set and the singleton sets (and additionally,

[n] when d is odd) as trivial. A set Y = {Y S1 , . . . , Y St} of t bicolorings is called an

induced bisecting family of order d for a hypergraph G if

1. each Si ⊆ [n] has exactly d vertices, 1 ≤ i ≤ t, and

2. for every non-trivial hyperedge A ∈ E(G), A|Si is induced bisected by Y Si for at

least one i, 1 ≤ i ≤ t.

Let βd(G) denote the minimum cardinality of an induced bisecting family of order d for

hypergraph G.

Formulation based on the Hamming cube

Two n-dimensional vectors A and B, A,B ∈ Rn, are said to be trivially orthogo-

nal if in every coordinate i ∈ [n], at least one of A(i) or B(i) is zero. The vec-

tors A and B are non-trivially orthogonal if they are orthogonal, but not trivially or-

thogonal. For instance, the rows of a Hadamard matrix are non-trivially orthogonal.

Consider the following problem: "Given the n-dimensional Hamming cube {0, 1}n,

what is the minimum cardinality of a subset V of n-dimensional {−1, 0, 1} vectors,
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each containing exactly d non-zero entries, such that every point X ∈ {0, 1}n in the

Hamming cube has some V ∈ V which is non-trivially orthogonal to X?". It is not

hard to see that the all-zero vector and the unit vectors {(1, 0, . . . , 0), (0, 1, . . . , 0), . . .,

(0, 0, . . . , 1)} can never have any non-trivially orthogonal vector in {−1, 0, 1}n. Addi-

tionally, the all-ones vector (1, . . . , 1) cannot be non-trivially orthogonal to any vector in

{−1, 0, 1}n consisting of exactly d non-zero entries, when d is odd. We call the vectors

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) (and additionally, (1, . . . , 1) when d is odd) as

trivial. Since no n-dimensional {−1, 0, 1} vector with exactly one non-zero entry is

non-trivially orthogonal to any non-trivial point of the Hamming cube, we assume that

d ≥ 2.

Definition 1.2 Let 2 ≤ d ≤ n, where d and n are integers. We define βd(n) as the

minimum cardinality of a subset V of n-dimensional {−1, 0, 1} vectors, each containing

exactly d non-zero entries, such that every non-trivial point in the Hamming cube {0, 1}n

has a non-trivially orthogonal vector V ∈ V .

In Chapter 4, we consider this problem of induced bisecting families in detail and

establish bounds for βd(n).

1.3 Some extremal questions related to bisection

Next, we consider the following extensions of the problems based on the property of

bisection. A family A of subsets of [n] is called bisection closed if for every A,B ∈ A,

either A bisects B or B bisects A. The problem is to estimate the largest cardinality

of such a family. It is possible to compute the minimum bisecting families for some

small families. Let A1 and A2 denote two family of subsets of [n], and let βD(A1)

and βD(A2) are known for D = {−1, 0, 1}. We study the problem of computation of

bisecting families for products of families A1 and A2.

Example 1.3 Let I denote the family of subsets corresponding to the intervals on a

line containing the points from 1 to n, i.e., I = {I = (x, x + 1, . . . , y)|1 ≤ x < y ∈
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[n]}. It is not very hard to see that β[±1](I) is 1. Similarly, let I2 denote the family of

subsets corresponding to the rectangular two dimensional intervals on a plane formed

by Cartesian product [n] × [n]. It is not immediate how to directly compute β[±1](I2)

and it feels like we need at least two sets in any bisecting family to bisect all such two

dimensional rectangular sets. However, using the fact that I2 is formed by Cartesian

product I × I, we can compute a bisecting family of cardinality one.

1.4 The inverse problem of unbiased representation

In the questions related to bisecting families and D-secting families, we are given a

family A of subsets of [n] and the problem is to compute a set of bicolorings B such

that for every A ∈ A, there exists a B ∈ B with 〈XA, YB〉 ∈ D. It is natural to ask

the inverse problem: given a set of bicolorings B, finding a small family of subsets

satisfying the zero-dot-product property. This problem has numerous application in the

field of drug testing and formation of unbiased committees as discussed in Chapter 5 in

detail. Below, we define the problem formally.

Let B denote a set of bicolorings of [n] = {1, . . . , n}, where each bicoloring B ∈ B

maps each point in [n] to either -1 or +1. Let YB denote the n-dimensional vector

representing the bicoloring B, i.e. YB = (B(1), . . . , B(n)). A non-empty set A ⊆ [n] is

said to be an unbiased representative for a bicoloringB ∈ B if 〈XA, YB〉 = 0, whereXA

denotes the 0–1 n-dimensional incidence vector corresponding to A. We call a family

A of subsets of [n] an unbiased representative family (URF in short) for B if for every

bicoloring B ∈ B, there exists at least one set A ∈ A such that 〈XA, YB〉 = 0. Note

that the two monochromatic bicolorings can never have any unbiased representatives -

we call these bicolorings as ‘trivial’. Let γ(B) denote the minimum cardinality of an

unbiased representative family for B. We define the maximum of γ(B) over all possible

family B of non-trivial bicolorings as γ(n).

In Chapter 5, we consider this problem of Unbiased representative families in detail,

discuss its relation to bisecting families and establish bounds for γ(n).
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1.5 Organization of the thesis

In Chapter 2, we give a brief presentation of existing literature on the topics related to

the problems addressed in the thesis, and discuss tools and techniques used in the thesis.

In Chapter 3, we discuss the problem of bisecting and D-secting families, expand upon

the ideas used and present the results obtained in this direction. In Chapter 4, we inves-

tigate a natural extension of the bisecting family problem- the induced bisecting family

problem, study few extremal problems and obtain (in some cases) asymptotically tight

bounds. In Chapter 5, we study the problem of ‘systems of unbiased representatives’

for a family of bicolorings- this can be viewed as a dual or inverse question to that

posed for the bisecting family problem. In Chapter 6, we analyze few extremal ques-

tions pertaining to bisection closed families and product of set systems. In Chapter 7,

we discuss some questions that remain open for investigation. From the introduction,

it is clear that all of these problems can be either stated in a ‘set-theoretic’ framework

or a ‘hyperplane-covering’ framework. We follow the set theoretic framework for the

remainder of this report.
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Chapter 2

Preliminaries and literature survey

Let n be some positive integer and [n] denotes the set {1, . . . , n}. Let [±i] denote the

set {−i, . . . , 0, . . . ,+i}. A set system or family of sets denote a collection of subsets

of [n]. Set systems are also referred to as hypergraphs. For any hypergraph G, V (G)

denotes the vertex set and E(G) denotes the edge set of G. A hypergraph is k-uniform

if all its members are k-elements subsets of [n]. So, graphs are 2-uniform hypergraphs.

This chapter is organized into two sections. In Section 1, we give a brief presentation of

existing literature on topics related to the problems addressed in the thesis. In Section

2, we discuss the tools and techniques used in the thesis.

2.1 Existing problems and results

Discrepancy of set systems

A vertex coloring C of a hypergraph G is a function C : V (G) → N. An r-coloring

of vertices is a function C : V (G) → {1, ..., r} i.e., an assignment of a color in range

1 through r to every vertex v ∈ V . A coloring C of vertices is proper if no e ∈ E(G)

remains monochromatic under C. The minimum number of colors required for a proper

coloring of the vertices of G is the chromatic number χ(G) of G.

Definition 2.1 (Discrepancy) Given a bicoloring X , X : V (G) → {−1,+1}, let
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CX(e) = |∑v∈eX(v)| denote the discrepancy of the hyperedge e ∈ E(G) under the

bicoloring X . Then, the combinatorial discrepancy of the hypergraph G, denoted by

disc(G), is defined as disc(G) = minX maxe∈E CX(e).

The earliest results in discrepancy theory come from ramsey theoretic problems such

as the Van der Waerden Theorem [22] and Ramsey Theorem [58]; however, the first

result that brought discrepancy theory proper attention was Roth’s Theorem [62] on

arithmetic progression. The first result establishing upper bounds on disc(G) in terms

of |V (G)| was due to Olson and Spencer [54] who proved that disc(G) ≤ 2
√
n log n,

where n = |V (G)|. Spencer [69] gave an alternate upper bound of O(
√
n log(2m

n
))

using information theoretic arguments, this result is the Spencer’s theorem. This re-

sult is particularly interesting due to the following corollary - ‘when the hypergraph G

has O(n) hyperedges, disc(G) is at most 6
√
n’. Spencer’s theorem has applications

in Fourier analysis to “Rudin-Shapiro sequences” (see [69]) and in Littlewood’s prob-

lem on “Flat polynomials” (see [11]). Spencer’s method was non-constructive: recent

works by Nikhil Bansal [8], Bansal and Spencer [9], Lovett and Meka [47] provide con-

structive approaches for obtaining low discrepancy colorings. Recently, combinatorial

discrepancy and related notions has been applied to great effect in the study of opti-

mal bin packing: given n items each having size in the range [0, 1], packing the items

in the smallest number of bins each of size 1. Though, the problem is known to be

NP -hard [30, 18], an existing algorithm by Karmakar and Karp [37] obtains a pack-

ing using OPT + O(log2OPT ) bins. Using the ideas of combinatorial discrepancy,

Rothvoß [63], and Rothvoß and Hoberg [35] gave an algorithm that obtains a packing

using OPT + O(logOPT log logOPT ) and OPT + O(logOPT ) bins, respectively.

There is a huge literature of combinatorial discrepancy along with its measure theoretic

counterparts; for definitions, results, and extensions of discrepancy and related prob-

lems, see [16, 48, 34, 12].
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Discrepancy connection to our work

Below, we define βD(E(G)) in terms of the discrepancy of a hypergraph G, where

D = [±i]. Let t ∈ N be the minimum number such that there exists a set of t hyper-

graphs G1, . . . , Gt on vertex set V = [n] with (i) disc(Gj) ∈ [±i], for 1 ≤ j ≤ t, and,

(ii) ∪tj=1Gj = G. Given an optimal D-secting family B of E(G), it is easy to con-

struct a set of hypergraphs G1, . . . , G|B| satisfying the above conditions. Again, given

a set of t hypergraphs G1, . . . , Gt satisfying conditions (i) and (ii) under bicolorings

Y1, . . . , Yt, respectively, let (Yj(+1), Yj(−1)) be the bipartition of V formed by the bi-

coloring Yj . Then, B = {Y1(+1), . . . , Yt(+1)} is a D-secting family for E(G). Thus,

β[±i](E(G)) = t. Moreover, the discrepancy of a hypergraph G can be defined in terms

of β[±i](E(G)) as follows. The discrepancy of a hypergraph G is the minimum i ∈ N

such that β[±i](E(G)) = 1.

To see the connection of induced bisecting families with discrepancy, consider the

following example. Let t ∈ N be the minimum number such that there exists a set of t

hypergraphs G1, . . . , Gt on subsets of [n] with (i) |V (Gj)| = d, (ii) disc(Gj) = 0, for

1 ≤ j ≤ t, and, (iii) for each e ∈ E(G), there exists a Gj such that e|V (Gj) ∈ E(Gj)

(e|V (G) denotes the hyperedge e induced on the vertex set V (G)). Then, βd(E(G)) = t.

Covering the Hamming Cube

An affine hyperplane is a set of vectors H(a, b) = {x ∈ Rn : 〈a, x〉 = b}, where

a ∈ Rn, b ∈ R. Covering the {0, 1}n Hamming cube with the minimum number of

affine hyperplanes has been well studied - a point x ∈ {0, 1}n is said to be covered by a

hyperplane H(a, b) if 〈a, x〉 = b. Without any further restriction, note that H(e1, 0) and

H(e1, 1) covers every point on the {0, 1}n Hamming cube, where e1 = (1, 0, . . . , 0) is

the first unit vector. Alon and Füredi [2] show that the covering-by-hyperplanes problem

becomes substantially nontrivial under the restriction that only the nonzero vectors are

covered. They demonstrated, using the notion of Combinatorial Nullstellensatz [3], that

we need at least n affine hyperplanes when the zero vector remains uncovered. This
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can be achieved by the set of hyperplanes {H(ei, 1)}, where ei is the ith unit vector,

1 ≤ i ≤ n. Many other extensions of this covering problem involving other restrictions

have been studied in detail (see [43, 66, 65]).

Relation to our work

The problem of bisecting families imposes the following constraints on the minimum

cardinality set of covering hyperplanes {Hi(ai, bi)}: (i) bi ∈ {−1, 0, 1}; (ii) ai ∈

{−1, 1}n. The problem of induced-bisecting families puts stronger restrictions not just

on the hyperplanes, but also on the definition of ‘covering’ by a hyperplane {Hi(ai, bi)}:

(i) bi = 0; (ii) ai consists of exactly d non-zero coordinates, ai ∈ {−1, 0, 1}n and

d ∈ [n]; (iii) we say a point x is covered by a hyperplane H(a, b) when a is non-

trivially orthogonal to x. The unbiased representative problem deals with covering of

the {−1, 1}n Hamming cube with the following restrictions on the covering hyperplanes

{Hi(ai, bi)}: (i) bi ∈ {0}; (ii) ai ∈ {0, 1}n.

Separating families

Given a family A of subsets of [n], finding another family B with certain properties

has been well investigated. One of the most studied problem in this direction is the

computation of separating families. Let A consist of pairs {i, j}, i, j ∈ N, i 6= j and

B be another family of subsets on [n] (A can be viewed as the edge set of a graph on

vertex set [n]). A subset B separates a pair {i, j} if i ∈ B and j 6∈ B or vice versa.

The family B is a separating family for A if every pair {i, j} ∈ A is separated by some

B ∈ B. It is easy to see that B is indeed a bisecting family for A. Let f(n) denote the

size of a minimum separating family B for a family A consisting of all the
(
n
2

)
pairs

(edge set of a complete graph on n vertices). Rényi [59] proved that f(n) = dlog ne.

Observe that f(n) is the minimum number of bipartite graphs needed to cover the edges

of a complete graph Kn. We note the following generalization of the above statement

for arbitrary graphs.

12



2.1. Existing problems and results

Proposition 2.2 (Folklore) Let χ(G) denote the chromatic number of graph G. Then,

dlogχ(G)e bipartite graphs are necessary and sufficient to cover the edges of G.

Proof. Let G1(L1 ∪ R1, E1), . . . , Gt(Lt ∪ Rt, Et) be t bipartite graphs whose union

covers G(V,E), t ∈ N. Firstly, we show that t ≥ dlogχ(G)e. To each vertex v ∈ V ,

assign a t length 0,1 bit vector: jth bit is 1 if v ∈ Lj and 0 otherwise. Color the vertices

in V with the decimal equivalent of its bit vector. This uses at most 2t colors and let

this coloring be X . To see that X is a proper coloring of G, observe that for any edge

{x, y} ∈ E and {x, y} ∈ Ej , x and y receive different bits in jth position. So, they

receive different colors under X . So, 2t ≥ χ(G), i.e., t ≥ dlogχ(G)e.

To show that G can be covered with union of dlogχ(G)e bipartite graphs, consider

a proper coloring X : V (G) → {1, . . . , χ(G)} using χ(G) colors. For each vertex

v ∈ V (G), obtain the dlogχ(G)e length 0,1 bit vector that is just the binary equivalent

of its color under X . Construct graphs G1(L1 ∪ R1, E1), . . . , Gdlogχ(G)e(Ldlogχ(G)e ∪

Rdlogχ(G)e, Edlogχ(G)e) as follows: (i) add v to Lj if its jth bit is 1; otherwise add it

to Rj , (ii) add edge {x, y} to Ej if x and y have different bits in jth position. From

construction, it is not hard to see that each Gj(Lj ∪ Rj, Ej), 1 ≤ j ≤ dlogχ(G)e, is

bipartite. To see that ∪dlogχ(G)e
j=1 Ej = E, for the sake of contradiction, assume that there

exist an edge {x, y} ∈ E such that {x, y} 6∈ ∪dlogχ(G)e
j=1 Ej . Again from construction,

{x, y}must be monochromatic under X which is a contradiction. So, ∪dlogχ(G)e
j=1 Ej = E

and we have shown that dlogχ(G)e bipartite graphs are sufficient to cover edges of G.

This completes the proof of the proposition. 2

See [59, 38, 71, 24, 68] for detailed results and related problems on separating fam-

ilies.

Connection to bisecting families

Note that f(n) is equal to β0(n, 2), thus β0(n, 2) = dlog2 ne. In fact, when the family

A is the edge set of a graph G, where V (G) = [n], any bisecting family B for A forms

a covering of the edges of G with |B| bipartite graphs. We state these observations as a
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corollary below.

Corollary 2.2.1 For a graph G, β0(E(G)) = dlog2 χ(G)e. Thus, β0(n, 2) = dlog2 ne.

Test Cover

Definition 2.3 Given a family A of subsets of [n], a sub-collection T ⊆ A is a test

cover for [n] if every pair of [n] is separated by some S ∈ T : a subset S separates a

pair {i, j} if i ∈ S and j 6∈ S or vice versa.

The test cover problem is studied in the context of drug testing, biology [57, 73, 42]

and pattern recognition [23]. Garey and Johnson [30] first established that minimum

test set problem is NP -hard by a reduction from the three dimensional matching prob-

lem. Moret and Shapiro [50] initiated the study of test cover problems in the following

setting. A diagnostic table with n categories and m tests is an n × m matrix, where

the (i, j)th entry denotes the result of the test Tj on an object from ith category. They

showed that the set cover problem is polynomial time reducible to the test cover prob-

lem. Halldórson et al. [32] established that test cover is hard to approximate within

o(log n) unless P = NP , where n is the number of elements in the ground set. They

also give an O(ln k) factor approximation algorithm when the size of the largest set is

upper bounded by k. Subsequently, the same problem and its extensions are studied in

many other works (see [20, 19, 10]). Due to the intrinsic connection of the test cover

problem with separating families, the connection with bisecting families follows.

In broad sense, our work is motivated by the ideas from combinatorial discrepancy,

separating families, test cover and covering the Hamming cube. In the next section, we

discuss tools and techniques from linear algebra, polynomials and probabilistic methods

that are used in the thesis.
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2.2 Tools and techniques

2.2.1 Linear algebraic methods

We denote an n-dimensional vectorX ∈ {0, 1}n (or Y ∈ {−1,+1}n) asX = (x1, . . . , xn)

(respectively, Y = (y1, . . . , yn)) where xj ∈ {0, 1} (resp., yj ∈ {−1,+1}). The weight

of a vector X = (x1, . . . , xn) ∈ {0, 1}n (or {−1,+1}n) is the number of xj’s which are

1 (resp., -1), 1 ≤ j ≤ n. A vector X ∈ {0, 1}n is even (resp., odd) if the number of 1’s

in X is even (resp., odd). A vector Y ∈ {−1, 1}n is even (resp., odd) if the number of

−1’s in Y is even (resp., odd). Let F denote a field, containing 0 and 1.

Definition 2.4 (Vector Space) A vector space over a field F is an additive abelian

group (V,+, .) closed under left multiplication with elements of F. It is required that

multiplication is (i) distributive over addition in both V and F, and (ii) associative in F.

Elements of V are called vectors or points.

Given a set {v1, . . . , vm} of vectors, a linear combination of these vectors is of the

form λ1v1 + · · · + λmvm, where each λi ∈ F. The set of all the linear combinations

of {v1, . . . , vm} is the span of {v1, . . . , vm}, denoted by span{v1, . . . , vm}. The vectors

{v1, . . . , vm} are linearly independent if λ1v1+· · ·+λmvm = 0 implies that each λi = 0.

A set of linearly independent vectors that spans the vector space V is called a basis for

V . The cardinality of the basis set is the dimension of V , denoted as dim(V ).

Proposition 2.5 Let v1, . . . , vk denote a collection of linearly independent vectors in a

vector space V . Then, k ≤ dim(V ).

Proposition 2.5 is called as the linear algebra bound. Given two vectorsX = (x1, . . . , xn)

and Y = (y1, . . . , yn) from some vector space V , their inner product, denoted by 〈X, Y 〉,

is x1y1 + · · ·+ xnyn. The vectors X and Y are orthogonal if 〈X, Y 〉 is 0. For any sub-

space U ⊆ V , its orthogonal space denoted by U⊥ is defined as

U⊥ = {v ∈ V | 〈v, u〉 = 0 for each u ∈ U}.
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The dimensions of these spaces are related by the following equality.

Proposition 2.6 Let V denote a finite dimensional vector space and U ⊆ V be a sub-

space of V . Then, dim(U) + dim(U⊥) = dim(V ).

Function space

Let S be any set and F denote some field. A function f : S → F is a mapping of the

elements of S to some elements of F. Let V denote the set of all the functions from

S to F. For any two functions f, g ∈ V , let (i) (f + g)(x) = f(x) + g(x) and (ii)

(cf)(x) = cf(x), where x ∈ S, c ∈ F. Then, (V,+, .) is a vector space over F called

function space. The zero element is the function f such that f(x) = 0 for all x ∈ S.

In the remaining of the discussion, we restrict our focus to the domain of {0, 1}n where

F = R, the set of real numbers.

Proposition 2.7 (Diagonal criterion) For i ∈ {1, . . . ,m}, let fi : S → F be functions

and vj ∈ S such that

fi(vj)


6= 0, for i = j,

= 0, for 1 ≤ j < i ≤ m.

Then, f1, . . . , fm are linearly independent.

Proof. For the sake of contradiction, assume that there exist λ1, . . . , λm ∈ F such that

at least one of them is nonzero and λ1f1 + · · ·+ λmfm = 0. Let i be the smallest index

such that λi is nonzero. Then, evaluating the functions on vi, we get λi = 0, which is a

contradiction. 2

Polynomials

Let R denote a commutative ring with identity. Then, we can construct a ring R[x]

of polynomials whose elements are of the form f(x) = a0 + a1x + a2x
2 + . . ., where
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each ai ∈ R and the symbol x is the indeterminate or variable. Each term is called a

monomial. The degree of the polynomial is the maximum of the degrees of the monomi-

als having nonzero coefficient. Note that the definition directly extends to polynomials

on multiple indeterminates. In the rest of the discussion, we focus our discussion on

polynomials in F(X = (x1, . . . , xn)) and the functions they compute on {0, 1}n (or

{−1, 1}n), where F denote a field containing both 0 and 1.

A polynomial is multilinear if each indeterminate in any monomial has degree at

most one. In the domain of {0, 1}n Hamming cube, any x2
i can be replaced by xi.

Similarly, in the domain of {−1, 1}n Hamming cube, any x2
i can be replaced by 1. This

process is often termed as multilinearization. Therefore, if the domain is restricted to

either the {0, 1}n Hamming cube or {−1, 1}n Hamming cube, any polynomial of degree

k can be replaced by a multilinear polynomial of degree at most k, where k is an integer.

One can define any multilinear polynomial as polynomials of the form

P (X) =
∑
S⊆[n]

cS
∏
i∈S

xi.

Fact 1 The space of multilinear polynomials over X = (x1, . . . , xn) form a vector

space over R (the set of all real numbers), where the domain is restricted to the {0, 1}n

Hamming cube. The monomials of the form
∏
i∈S xi for all subsets S ⊆ [n] forms a

basis for the vector space.

Let f : {0, 1}n → {0, 1} denote a Boolean function on the {0, 1}n Hamming cube.

Based on the evaluations of f , there is a natural way to associate multilinear polynomials

to Boolean functions.

Definition 2.8 A multilinear polynomial P (X) exactly represents a Boolean function

f if and only if for every X ∈ {0, 1}n, P (X) = f(X).

Proposition 2.9 For every function f : {0, 1}n → R, there is an unique multilinear

polynomial P (X) ∈ R[X] that exactly represents it.
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Proof. Let IA(X) be defined as follows.

IA(X) =
(

1 + (1− 2a1)(1− 2x1)
2

)
· · ·

(
1 + (1− 2an)(1− 2xn)

2

)
.

Note that IA(X) is an indicator variable that is 1 if and only if X = A, where A =

(a1, . . . , an) ∈ {0, 1}n. Now, define P (X) as

P (X) =
∑

A∈{0,1}n
f(A)IA(X).

It is not hard to see that P exactly represents f .

To prove uniqueness, observe that if two distinct polynomials compute the same

function, then their difference is a non-zero polynomial evaluating to 0 at every point in

{0, 1}n. However, it is not very hard to see that no non-zero polynomial can evaluate to

zero at every point in {0, 1}n. 2

We now move to another kind of polynomial representation of Boolean functions –

functions of the form f : Bk → B, whereB = {0, 1} (orB = {−1,+1}) and k is some

non-negative integer. We restrict ourselves to the domain of {−1,+1}n. Note that under

this restriction, a polynomial representing the ‘parity’ function on Y = (y1 . . . , yn) is

given by the monomial y1 · · · yn. Let sign : R\{0} → {−1, 1} denote the function that

maps all positive real numbers to 1 and all negative real numbers to -1.

Definition 2.10 (Weak representation) A multilinear polynomial P (Y = ((y1 . . . , yn)))

weakly represents a Boolean function f if and only if P is nonzero and for every

Y ∈ {−1, 1}n where P (Y ) is nonzero, sign(f(Y )) = sign(P (Y )). The weak de-

gree of a function f is the degree of lowest degree polynomial that weakly represents

f .

The next result was originally proved by [49] that deals with weak degree of parity

functions.

Proposition 2.11 The weak degree of the parity function on n variables is n.
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Proof. We only need to show that there is no polynomial of degree less than n that

weakly represents the party function. Let ϑ denote the parity function on n variables.

For the sake of contradiction, assume that P (Y = (y1, . . . , yn)) is a polynomial of

degree less than n and it weakly represents the parity function. Consider the vector

space V of all multilinear polynomials over reals equipped with the following inner

product:

〈P,Q〉 =
∑

Y ∈{−1,+1}n
P (Y )Q(Y ).

Since P weakly represents ϑ, from definition, it follows that 〈ϑ, P 〉 is nonzero. Since P

is of degree less than n, it follows that for any monomialM of P , 〈ϑ,M〉 is 0: M misses

at least one variable in y1, . . . , yn (let that be yj) and 〈ϑ,M〉 = ∑
Y ∈{−1,+1}n P (Y )Q(Y ) =∑

Y ∈{−1,+1}n,yj=−1 P (Y )Q(Y ) +∑
Y ∈{−1,+1}n,yj=1 P (Y )Q(Y ) = 0. This yields the de-

sired contradiction. 2

Nullstellensatz

The following version of Hilbert’s Nullstellensatz and an extension also known as ‘Com-

binatorial Nullstellensatz’ is widely used in various combinatorial problems.

Theorem 2.12 (Hilbert’s Nullstellensatz) Let F be some field, f ∈ F(X = (x1, . . . , , xn))

be some polynomial, and S1, . . . , Sn be nonempty subsets of F. If f(X) = 0 for every

X ∈ S1 × · · · × Sn, then there are polynomials h1, . . . , hn ∈ F(X = (x1, . . . , , xn))

such that deg(hi) ≤ deg(f)− |Si| and

f(X = (x1, . . . , , xn)) =
n∑
i=1

hi(X = (x1, . . . , , xn))
∏
s∈Si

(xi − s).

Noga Alon [3] gave a simple proof of the above statement and then using it proved

the following extension.

Theorem 2.13 (Combinatorial Nullstellensatz) Let F be a field and f ∈ F(X =

(x1, . . . , xn)) be some polynomial of degree d. Let the coefficients of the term xt11 x
t2
2 · · ·xtnn
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be non-zero and t1 + . . . + tn = d. If S1, . . . , Sn are finite sets with each |Si| ≥ ti + 1,

then there exists a point X ∈ S1 × · · · × Sn such that f(X) is nonzero.

Proof. Assume the result is false and |Si| = ti + 1. Let gi(X) = ∏
s∈Si(xi − s). Let

h1, . . . , hn denote the polynomials guaranteed by Hilbert’s Nullstellensatz. So,

deg(hi) ≤ deg(f)− |Si| = d− (ti + 1)

and f(X) = ∑n
i=1 hi(X)xti+1

i + terms of degree less than deg(f). By our assumption,

the coefficient of the monomial
∏n
i=1 x

ti
i is nonzero in the left hand side - this implies

that the coefficient of the monomial
∏n
i=1 x

ti
i is nonzero in the right hand side as well.

However, degree of higi is at most deg(f) and if some monomial is of degree equal

to deg(f), it must be divisible by xti+1
i . Therefore, it follows that coefficient of the

monomial
∏n
i=1 x

ti
i is zero in the right hand side, which is a contradiction. 2

2.2.2 The probabilistic method

The probabilistic method is very useful in establishing bounds in various combinatorial

problems. The main idea of the method is as follows. In order to show that a combi-

natorial object possesses a certain property, (i) one defines a suitable probability space,

(ii) determines upper bounds on probabilities of certain ‘bad’ events that prevent the

construction of the objects with the desired properties, and (iii) shows that with positive

probability none of the ‘bad’ events occur. Let X denote a random variable taking val-

ues {x1, . . . , xn} where X = xi with probability p(xi). Then, the expected value E[X]

(or µ) is
∑
X=x xp(X = x).

Fact 2 (Linearity of expectation) If X = c1X1 + . . . + cnXn is the sum of n random

variables X1, . . . , Xn, where ci ∈ R, then E[X] = c1E[X1] + . . .+ cnE[Xn].

The property of linearity of expectation does not require any restriction on the ran-

dom variables. In hindsight, it establishes that for any probability space, there exists a
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point for which X ≥ E[X] and a point for which X ≤ E[X]. The following extension

of these ideas gives the probability of the random variable exceeding certain values.

Concentration bounds

Theorem 2.14 (Markov’s inequality) For any non negative random variable X and

a > 0, P (X ≥ a) ≤ E[x]
a

.

The variance V ar[X] (or σ2) is E[(X −E[X])2]. The following extension of Markov’s

inequality, also known as the second moment method, gives the probability of the dif-

ference of the random variable from its expectation exceeding certain values.

Theorem 2.15 (Chebyschev’s inequality) For any random variable X and a > 0,

P (|X − E[X]| ≥ a) ≤ σ2

a2 .

An important difference from the Markov’s inequality is that unlike Markov’s inequality,

Chebyschev’s inequality works for random variables taking negative values as well. We

use Chebyschev’s inequality in Chapter 5 to obtain representative families with small

bias. One of the applications of the second moment method is in establishing tight

bounds for the covering number Cov(F) for an r-uniform hypergraph F on [n].

Definition 2.16 A covering of a hypergraph on [n] is a collection of hyperedges whose

union covers the ground set [n]. The covering number Cov(F) is the minimum cardi-

nality of any covering of a hypergraph F .

Frankl and Ródl developed a method for obtaining such coverings provided the r-

uniform hypergraph F on [n] satisfies certain constraints.

Theorem 2.17 (Ródl nibble) For every r ≥ 2, real numbers k ≥ 1, a > 0, there exists

δ = δ(r, k, a) and d0 = d0(r, k, a) such that for every n ≥ D ≥ d0, the following holds.

Every r-uniform hypergraph F on [n] with each vertex having a positive degree and

satisfying the following conditions -

1. for all but δn vertices x ∈ [n], the degree d(x) ≤ (1± δ)D,
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2. for all vertices x ∈ [n], d(x) < kD, and

3. for every pair of vertices x, y ∈ [n], x 6= y, the codegree d(x, y) ≤ δD,

contains a cover of size at most n
r
(1 + a) hyperedges.

This is a very powerful method which has been useful in numerous applications in recent

years. We use this theorem in Chapter 5 to obtain representative families consisting of

fixed sized subsets.

In general, for independent and identically distributed Bernoulli random variables,

there is much higher concentration around the mean than that given by Chebyschev’s

inequality. Let X1, . . . , Xn be i.i.d. Bernoulli random variables each taking values 1

and 0 with probabilities p and 1 − p, respectively. Let X = X1 + . . . + Xn. Note that

E[Xi] = p, so E[X] = np. We obtain stronger bounds for P (X ≥ (1+ δ)µ) as follows.

For a fixed λ > 0,

P (X ≥ (1 + δ)µ) =P (eλX ≥ eλ(1+δ)µ) (2.1)

≤ E[eλX ]
eλ(1+δ)µ (using Markov’s inequality) (2.2)

E[eλX ] =
n∏
i=1

E[eλXi ] =
n∏
i=1

(peλ + (1− p)e0) ≤
n∏
i=1

ep(e
λ−1) = enp(e

λ−1) = eµ(eλ−1).

So, from Inequality 2.1, we get, P (X ≥ (1 + δ)µ) ≤ eµ(eλ−1)

eλ(1+δ)µ . Substituting λ with

ln(1 + δ), we get the following theorem known as the Chernoff’s bound.

Theorem 2.18 (Chernoff’s bound)

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

P (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

22



2.2. Tools and techniques

Lovász Local Lemma

A combinatorial structure may exclude or forbid several substructures. The presence of

such forbidden structures may be viewed as failure events in probabilistic experiments

that randomly generate structures. If a failure in realizing a combinatorial object is

caused by the occurrence of any one or more of several mutually independent events,

then it is easy to compute the probability that none of the independent failure-causing

events occur. The Lovász Local Lemma addresses a generalized version of this problem

where each of these failure events is independent of all but a few other failure-causing

events. Such limited dependencies occur in several problems and the use of the local

lemma is indeed beneficial. We first introduce the notion of a dependency graph as

follows.

Definition 2.19 The dependency graph for a set of events E1, E2, . . . , En is a directed

graph G, where V (G) = {E1, E2, . . . , En}, and event Ei is mutually dependent only on

events in the set {Ej|(Ei, Ej) ∈ E(G)}.

Suppose E1, E2, . . . , En is the set of bad events in some probability space Ω, each

formed by some set of decision variables. We wish to know whether it is possible that

in a random assignment to decision variables, none of the bad events Ei, 1 ≤ i ≤ n,

occur. Here, decision variables are assigned randomly and independently, and events

are defined over these variables. It may however be the case that some bad events

may occur in any random sample of the decision variables. Lovász introduced certain

constraints under which it is possible to avoid all bad events simultaneously.

Lemma 2.20 (Lovász Local Lemma) LetG be a dependency graph for eventsE1, . . . , En

in a probability space. Suppose that there exists xi ∈ [0, 1] for 1 ≤ i ≤ n such that

P (Ei) ≤ xi
∏
{i,j}∈E(1− xj), then P

(⋂n
i=1Ei

)
≥ ∏n

i=1(1− xj).

For the proof of the lemma, refer to [52]. Following corollary is a direct consequence

of the lemma.
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Corollary 2.20.1 If every event E ∈ {E1, . . . , En} is dependent on at most d other

events, P (E) ≤ p, and ep(d+ 1) ≤ 1, then P
(⋂n

i=1Ei
)
> 0.

2.2.3 The entropy method

Information theoretic arguments are the basis of many results in combinatorics. The

ideas in this field come from the encoding of one group of combinatorial objects in

form of another group of combinatorial object whose properties are known. This can

be best explained with the following example. Let A denote a set of n elements, where

each element of A must be encoded as a unique binary string. What is the minimum

length t such that such an encoding is possible? To answer this question, we only need

to argue that - given any t, there are 2t distinct t bit binary strings and 2t must be at least

n. The entropy method provides a general framework for such kind of problems.

Definition 2.21 Let X denote a random variable taking values in some set S. The

entropy H(X) of X over a range S is

H(X) = −
∑
x∈S

P (X = x) log2 P (X = x).

If Y is another random variable taking values from T and (X, Y ) is the random variable

taking values from S×T based on the joint distribution ofX and Y , then the conditional

entropy H(X|Y ) is H(X|Y ) = H(X, Y )−H(Y ).

Entropy is a measure of randomness of a variable. So once a variable is completely

determined, its entropy is 0.

Fact 3 Let X , Y and Z denote three random variables taking values from S, T , and

R, respectively. Then,

1. H(X) ≤ log |S|.

2. H(X) ≤ H(X, Y ) ≤ H(X) +H(Y ).
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3. H(X|Y, Z) ≤ log |S|.

We state a few applications of the entropy method to covering problems yielding

(almost) tight lower bounds.

Covering a Kn with bipartite graphs

Proposition 2.22 Let G1, . . . , Gt denote bipartite graphs on [n] as the vertex set such

that ∪ti=1Gi = Kn. Let size(Gi) denote the number of non-isolated vertices in Gi.

Then, t ≥ log2(n). Moreover,
∑t
i=1 size(Gi) ≥ n log n.

Proof. LetGi(Ai, Bi, Ei) denote the ith bipartite graph, withAi∩Bi = φ andAi∪Bi ⊆

[n]. Pick a vertex v randomly and uniformly. It follows from the definition of entropy

that H(v) = log n. Let χi be the indicator variable,

χi =


1, if v ∈ Ai,

0, otherwise.

Note that once χ1, . . . , χt are known, v is completely determined. So,H(v|(χ1, . . . , χt)) =

0. So, 0 = H(v|(χ1, . . . , χt)) = H(v, (χ1, . . . , χt)) − H((χ1, . . . , χt)) ≥ H(v) −∑t
i=1 H(χi) ≥ log n− t. This completes the proof of the first part.

To prove the second part, for every Gi, delete one of Ai or Bi with probability 1
2 and

remove corresponding vetices from the Kn. Let mv denote the number of Gi’s vertex v

appears as non-isolated. Then, probability that v survives is 2−mv . So, expected number

of vertices surviving is
∑
v∈[n] 2−mv . Since at most one vertex can survive at the end,

by linearity of expectation,
∑
v∈[n] 2−mv ≤ 1. Using the fact that ‘arithmetic mean is at

least the geometric mean’ and
∑
vmv = ∑t

i=1 size(Gi), it follows that
∑t
i=1 size(Gi) ≥

n log n. 2

Proposition 2.23 (Fredman and Komlós) Let H1, . . . , Ht denote r-uniform r-partite

hypergraphs on [n] as the vertex set such that ∪ti=1Hi is Kr
n- the complete r-uniform
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hypergraph on n vertices. Then,

t ≥

(
n
r−2

)
(n− r + 2) log(n− r + 2)

2(n
r
)r−1

(
r
2

) = Ω( er

r
√

2πr
log n).

Proof. With every r-uniform hypergraph, associate a graph G(H) as follows.

V (G(H)) = {(S, i)|S ∈
(

[n]
r − 2

)
, i ∈ [n] \ S}.

E(G(H)) = {{(S, i), (S, j)} : S ∪ {i, j} ∈ E(H)}.

It follows from the premise of the theorem that ∪ti=1G(Hi) = G(Kr
n). G(Kr

n) can

be viewed as union of
(
n
r−2

)
complete Kn−r+2 graphs, one corresponding to each S ∈(

[n]
r−2

)
, which are disjoint from one another. So, from Proposition 2.22,

∑t
i=1 size(G(Hi))

must be at least
(
n
r−2

)
(n − r + 2) log(n − r + 2). Since each Hi is r-partite, for any

fixed (r − 2)-sized part P , there are (n
r
)r−2 distinct ways to choose one element each

from each part of P and each one of them contribute at most 2(n
r
) non-isolated vertices

to size(G(Hi)). Therefore, using Proposition 2.22,

t ·
(

r

r − 2

)(
n

r

)r−2
2(n
r

) ≥
t∑
i=1

size(G(Hi)) ≥
(

n

r − 2

)
(n− r + 2) log(n− r + 2).

2
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Chapter 3

Bisecting and D-secting families for set

systems

3.1 Introduction

Let n be any positive integer and A be a family of subsets of [n]. Another family B

of subsets of [n] is called a bisecting family for A, if for each subset A ∈ A, there

exists a subset B ∈ B such that |A ∩ B| ∈ {d |A|2 e, b
|A|
2 c}. What is the minimum

cardinality of a bisecting family for any family A? We pose a more general problem

based on the difference between |A ∩ B| and |A ∩ B|, where B = [n] \ B. We say

a family B is D-secting for A if for each subset A ∈ A, there exists a subset B ∈ B

such that |A ∩ B| − |A ∩ B| = i, where i ∈ D, D ⊆ {−n,−n + 1, . . . , 0, . . . , n}. Let

βD(A) denote the minimum cardinality of aD-secting family forA. In particular, when

D = {−1, 0, 1}, the family B becomes a bisecting family for A. We study two cases

depending onD: (i)D = {−i,−i+1, . . . , 0, . . . , i}, and (ii)D = {i}, for some i ∈ [n].

Observe that if D = {i}, only those sets A ∈ A for which |A| ≡ i (mod 2) and |A| ≥ i

can attain a value of i for |A ∩ B| − |A ∩ B|. So, we consider only those sets A in the

family A for which |A| ≡ i (mod 2) and |A| ≥ i, when D = {i}. We define βD(n)

as the maximum of βD(A) over all families A on [n] and βD(n, k) as the maximum of
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v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

Y1 Y2 Y3

Figure 3.1: Y1 = {{v1, v2, v3} → −1, {v4, v5, v6} → 1}, Y2 = {{v1, v2, v4} →
−1, {v3, v5, v6} → 1}, Y3 = {{v1, v3, v5} → −1, {v2, v4, v6} → 1} are bicolorings
of {v1, . . . , v6}. The sets e4, . . . , e9, e11, e12, e13 have same number of -1’s and +1’s
in Y1. Out of the remaining sets in

(
[6]
4

)
, e2, e3, e10, e14 have same number of -1’s

and +1’s in Y2. Remaining sets e1 and e15 have same number of -1’s and +1’s in Y3.
B = {Y1(−1), Y2(−1), Y3(−1)} = {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v5}} forms a bi-
secting family for

(
[6]
4

)
.

βD(A) over all families A ⊆
(

[n]
k

)
. When D = {i} (D = {−i,−i + 1, . . . , i}), we

sometimes abuse the notation to denote βD(A) by βi(A) (respectively, β[±i](A)).

Consider an example familyAwhich consists of all the 4-element subsets of {1, . . . , 6}.

Note that since each subset A ∈ A has an even cardinality, β0(A) = β[±1](A). Let

B = {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}}. It is not hard to verify that every 4-element subset

A ∈ A is bisected by at least one element in B (see Figure 3.1). So, β0(A) ≤ 3, for

A =
(

[6]
4

)
. In fact there is no pair of subsets of {1, . . . , 6} such that every 4-element sub-

set A ∈ A is bisected by one of them, which is asserted by Proposition 3.16. Therefore,

β0(A) = 3.
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3.1.1 Notations and definitions

Let [n] denote the set of integers {1, . . . , n}, ±i denote the set of integers {−i, i}, and

[±i] denote the set of integers {−i,−i + 1, . . . , i}. Let A denote a family of subsets

of [n] and B denote another family of subsets with some desired intersection property

with elements of A. Let
(

[n]
k

)
denote the family of all the k-sized subsets of [n]. We use

β[±i](A) (resp., βi(A)) to denote βD(A) if D = [±i] (resp., D = {i}). We denote an n-

dimensional vectorX ∈ {0, 1}n (or {−1,+1}n) asX = (x1, . . . , xn) where xj ∈ {0, 1}

(resp., {−1,+1}). The weight of a vector X = (x1, . . . , xn) ∈ {0, 1}n (or {−1,+1}n)

is the number of xj’s which are 1 (resp., -1), 1 ≤ j ≤ n. Vector X ∈ {0, 1}n is even

(resp., odd) if the number of 1’s in X is even (resp., odd). A vector Y ∈ {−1, 1}n is

even (resp., odd) if the number of −1’s in Y is even (resp., odd). We use log to denote

log2 unless specified explicitly.

3.1.2 Chapter outline

We begin by addressing the problem of bounding and computing βD(n), where D =

[±i]. We demonstrate a construction yielding an upper bound of d n2ie for β[±i](n). Fur-

ther, we show using a polynomial representation for the parity function that d n2ie is also

a lower bound for β[±i](n).

Theorem 3.1 β[±i](n) = d n2ie, n ∈ N, i ∈ [n].

We study β[±i](A) for a family A on [n], in terms of i and |A|, using Chernoff’s

bound.

Theorem 3.2 LetA be a family of subsets of [n] and letm = |A|. LetD = [±i], where

i ≥
√

3n ln(2m)
t

and t ≤ 1
2 logm. Then, βD(A) ≤ t.

In particular, if i ≥
√

4.2n+ 1 and |A| = O(nc), for c ∈ N, a D-secting family B of

cardinality O(log n) can be computed for families A, thus improving the bound from

Theorem 3.1 for this range of i and |A|.
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Subsequently, we study βD(n), where D is a singleton set, i.e., D = {i}. Note

that βi(n) = β−i(n). Moreover, when D = {−i, i}, note that β±i(n) ≤ βi(n) ≤

2β±i(n). Therefore, we focus on establishing bounds for βi(n). We demonstrate a

construction to show that β1(n) is at most dn2 e. We also show that β1(n) is at least dn2 e

using arguments similar to those in the proof of Theorem 3.1 about β[±1](n). In Section

3.3.2, we establish a lower bound of n−i+1
2 for arbitrary i ∈ [n], i ≥ 2. We demonstrate

a construction establishing βi(n) ≤ n− i+ 1. We have the following theorem.

Theorem 3.3 n−i+1
2 ≤ βi(n) ≤ n− i+ 1, n ∈ N, i ∈ [n].

In Section 3.4, we consider families A, A ⊆
(

[n]
k

)
. We study β[±1](n, k) in detail

when k is even; the analysis for βi(n, k) for i ∈ [n] and for the case when k is odd is

analogous. We have lower bounds for β[±1](n, k) given by Theorem 3.4, Observation

3.9 (see Section 3.1.3), and Theorem 3.5 which are useful when k is a constant, k is

sublinear in n, and k is linear in n, respectively. We establish the following theorem

using entropy based arguments.

Theorem 3.4

β[±1](n, k) ≥


log(n− k + 2), when k is even and k

2 is odd,

d(logd n
d k2 e
e)e, for any k ≥ 2.

When cn < k < (1 − c)n for a constant c, 0 < c < 1
2 , we establish an improved lower

bound for β[±1](n, k) using a vector space orthogonality argument, enabling us to apply

a recent result of Keevash and Long [39].

Theorem 3.5 Let c be a constant such that 0 < c < 1
2 and n ∈ N. If cn < k < (1−c)n,

then

max
{
β[±1](n, k), β[±1](n, k − 1), β[±1](n, k − 2), β[±1](n, k − 3)

}
≥ δn,

where δ = δ(c) is some real positive constant.
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Let A be a family of subsets of [n]. The dependency of a subset A ∈ A denoted by

d(A,A) is the number of subsets Â ∈ A, such that (i) |A ∩ Â| ≥ 1, and (ii) A 6= Â.

The dependency of a family d(A) or simply d, denotes the maximum dependency of any

subset A in the family A. We study β[±1](A) for families A consisting of k-sized sets

with bounded dependency and using a corollary of the Lovász local lemma from [51],

we prove the following probabilistic upper bound.

Theorem 3.6 For a family A consisting of k-sized subsets of [n] and dependency d,

β[±1](A) ≤
√
k
c

(ln(d+ 1) + 1), where c = 0.67.

We also study the case when A consists of all the subsets of [n] of cardinality more

than k, k ∈ [n] and we have the following bounds.

Theorem 3.7 LetA =
(

[n]
k

)
∪
(

[n]
k+1

)
. . .∪

(
[n]
n

)
. Then, n−k+1

2 ≤ β[±1](A) ≤ min{n2 , n−

k + 1}.

Note that when n−k is a constant, Theorem 3.7 gives better upper bounds for β[±1](A).

3.1.3 Some quick observations

In this section, we derive a few basic results on βD(A), βD(n) and βD(n, k). P is a

property for a set system if it is invariant under isomorphism. Two set systems H =

(X;E1, E2, . . . , Em) and I = (Y ;F1, F2, . . . , Fm) are said to be isomorphic if they

have the same number m of subsets, and if there exists a bijection ϕ : X → Y and a

permutation π on M = {1, 2, . . . ,m} such that

ϕ(Ei) = Fπ(i) (i = 1, 2, . . . ,m).

See [13, page 411] for related notions. It is not hard to see that for any two isomor-

phic families A1 and A2 on [n], βD(A1) = βD(A2). So, βD(A) ≤ t, for an inte-

ger t is a property of the set system. For any two families A1 and A2, A1 ⊆ A2,

βD(A1) ≤ βD(A2). Therefore, βD(n) and βD(n, k) are monotone with respect to n.
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However, βD(n, k) is not monotone with respect to k: β[±1](n, 2) = dlog ne (see Corol-

lary 2.2.1), β[±1](n, n2 ) = Ω(
√
n) (From Observation 3.9) whereas β[±1](n, n − 2) = 3

(see Proposition 3.16).

For a family A = {A1, . . . , Am} on [n], and a set S ⊆ [n], the family A|S =

{A1
|S, . . . , A

m
|S} is called a family induced by S on A if Aj|S = Aj ∩ S, for 1 ≤

j ≤ m. A property P is hereditary if A ∈ P implies A|S ∈ P for every induced

family A|S of A, S ⊆ [n]. We note that for any integer t, “βD(A) ≤ t” is not

a hereditary property. This can be demonstrated with the following example. Let

A = {{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}} be a family on {1, . . . , 5} and S = {1, 2, 3}.

A|S = {{1, 2}, {1, 3}, {2, 3}} is the subfamily of A induced by S. It is easy to see that

when D = [±1], βD(A) = 1 whereas βD(A|S) = 2.

For any A,B ⊆ [n], if B bisects A, by definition, [n] \ B also bisects A. We note

this fact in the observation below.

Observation 3.8 Let A be a family of subsets of [n] and B = {S1, . . . , Sr} be a D-

secting family for A, r ∈ N and D = [±i]. Then, H = {H1, . . . , Hr} is also a

D-secting family for A, where Hi ∈ {[n] \ Si, Si}, 1 ≤ i ≤ r.

For the rest of the section, assume that n is even (since it does not effect the asymp-

totics). Note that when k is even (resp., odd), the maximum number of k-sized sets

A ∈ A that can be bisected with any set B ⊆ [n] is
(n

2
k
2

)2
(respectively, 2

( n
2
d k2 e

)( n
2
b k2 c

)
),

k ∈ [n]. This gives a trivial lower bound for β[±1](n, k) using Stirling’s approximation,

i.e.,
√

2πn(n
e
)n ≤ n! ≤ e

√
n(n

e
)n.

Observation 3.9

β[±1](n, k) ≥

(
n
k

)
2
( n

2
d k2 e

)( n
2
b k2 c

) = Ω(
√
k(n− k)

n
). (3.1)

The constant in the lower bound isC =
√

2π2.5

e4
≥ .45. When k = n

2 , this corresponds

to a lower bound of Ω(
√
n) for β[±1](n, n2 ). Moreover, using the monotone property,
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3.2. Bounds for β[±i](n)

β[±1](n) ≥ β[±1](n, n2 ) = Ω(
√
n). In what follows, we derive improved upper bounds

and lower bounds for βD(n). We start our discussion with the case D = [±i], i ∈ [n],

followed by the case D = {i}.

3.2 Bounds for β[±i](n)

Recall that β[±i](n) is the maximum of β[±i](A) over all families A on [n], where

β[±i](A) denotes the minimum cardinality of a [±i]-secting family for A.

3.2.1 Upper bounds

Lemma 3.10 β[±i](n) ≤ d n2ie.

Proof. LetA denotes the family consisting of all the non-empty subsets of [n]. In what

follows, we demonstrate a construction that yields a [±i]-secting family of cardinality

n
2i for A, assuming 2i divides n. Let B1 = {1, 2, . . . , n2}. The set B2 is obtained from

B1 by swapping the largest i elements of B1 with the smallest i elements in B1. So,

B2 = {1, 2, . . . , n2 − i,
n
2 + i, n2 + i− 1, . . . , n2 + 1} (we write the swapped elements in

descending order for convenience). In general, Bj+1 is obtained from Bj by swapping

the largest i elements of B1 ∩ Bj (i.e., {n2 − ij + 1, . . . , n2 − ij + i}) with the smallest

i elements of B1 ∩ Bj (i.e., {n2 + ij − i + 1, . . . , n2 + ij}). We stop the process at

B n
2i

= {1, . . . , i, n− i, n− (i− 1), . . . , n2 + 1}. Let B = {B1, . . . , B n
2i
}. We illustrate

the entire procedure through an example in Figure 3.2 for n = 12 and D = {−1, 0, 1}.

We prove that B is indeed a [±i]-secting family forA. For the sake of contradiction,

we assume that there exists some A ⊆ [n] such that |A ∩ Bj| − |A ∩ Bj| 6∈ D, for all

Bj ∈ B. Let cj:=|A∩Bj| − |A∩Bj|, 1 ≤ j ≤ n
2i . From the construction of Bj+1 from

Bj , observe that |cj − cj+1| ≤ |Bj4Bj+1| = 2i, 1 ≤ j ≤ n
2i − 1. Clearly, c1 = d, for

some d 6∈ {−i, . . . , i}.

Claim 1 c n
2i
≤ −d+ 2i for d > 0 (resp. ≥ −d− 2i for d < 0).
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 7 6 8 9 10 11 12

1 2 3 4 8 7 6 5 9 10 11 12

1 2 3 9 8 7 6 5 4 10 11 12

1 2 10 9 8 7 6 5 4 3 11 12

1 11 10 9 8 7 6 5 4 3 2 12

B1

B2

B3

B4

B5

B6

Figure 3.2: B1 = {1, . . . , 6}, B2 = {1, . . . , 5, 7}, B3 = {1, . . . , 4, 7, 8}, B4 =
{1, . . . , 3, 7, 8, 9}, B5 = {1, . . . , 2, 7, 8, 9, 10}, B6 = {1, 7, 8, 9, 10, 11}. B =
{B1, . . . , B6} forms a bisecting family for 2[12].

Proof. Let B n
2i+1 be the set obtained from B n

2i
by swapping the largest i elements

{1, . . . , i} of B1 ∩ B n
2i

with the smallest i elements {n − i + 1, . . . , n} of B1 ∩ B n
2i

.

Let c n
2i+1 = |A ∩ B n

2i+1| − |A ∩ B n
2i+1|. Observe that since c1 = d and B n

2i+1 is B1,

c n
2i+1 = −d. Moreover, |c n

2i
− c n

2i+1| ≤ 2i. So, c n
2i

is at most −d+ 2i. The proof for the

case of d < 0 is similar. 2

We now have these exhaustive cases.

1. d ≥ 2i (or d ≤ −2i): Note that D = {−i, . . . ,+i} and |cj − cj+1| ≤ 2i, for all

1 ≤ j ≤ n
2i − 1. Using Claim 1, c n

2i
≤ 0 (resp., c n

2i
≥ 0). Therefore, there exists

at least one index l, 1 ≤ l ≤ n
2i − 1, such that cl · cl+1 ≤ 0. Observe that either of

cl or cl+1, or both lie in {−i, . . . ,+i}. This is a contradiction to our assumption

that A is not D-sected by B.

2. i < d < 2i: From Claim 1, it is clear that c n
2i
< i. So, if there exists an index l,

1 ≤ l ≤ n
2i −1, such that cl · cl+1 ≤ 0, either cl or cl+1 or both lie in {−i, . . . ,+i}.
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3.2. Bounds for β[±i](n)

Otherwise, c n
2i
∈ {0, . . . , i− 1} ⊂ D as desired.

3. −2i < d < −i: Similar to the previous case.

This establishes that β[±i](n) is at most n
2i , when 2i divides n. Note that when n

is not divisible by 2i, we can construct B of cardinality d n2ie with the same procedure,

whereBd n2i e = {1, . . . , p, n−p, n−(p−1), . . . , n2 +1}, p = n mod 2i. This completes

the proof of Lemma 3.10. 2

3.2.2 Lower bounds

To obtain a lower bound for βD(n), it is natural to remove 1 or 2 points from [n] and

to proceed with induction. However, we note that, even when D = {−1, 0, 1}, such a

direct induction only yields a lower bound of log n, which is not useful (since we already

have a lower bound of Ω(
√
n) from Section 3.1.3). In order to derive a tight lower bound

for βD(n), we use the vector representations of sets and a polynomial representation of

Boolean functions.

For any subset A ⊆ [n], let (i) XA = (x1, . . . , xn) ∈ {0, 1}n be the incidence vector

such that xi = 1 if and only if i ∈ A; and, (ii)YA = (y1, . . . , yn) ∈ {−1, 1}n be the

incidence vector such that yi = 1 if and only if i ∈ A. Observe that for any two subsets

A and B of [n], the dot product of XA = (x1, . . . , xn) with YB = (y1, . . . , yn), denoted

by 〈XA, YB〉, is equivalent to |A ∩ B| − |A ∩ B|. For an even (resp., odd) cardinality

subset A ∈ A, note that the corresponding incidence vector XA = (x1, . . . , xn) is even

(resp., odd). Let A be a family of subsets of [n]. Observe that for any even subset

Ae ∈ A and any arbitrary subset B ⊆ [n], 〈XAe , YB〉 ≡ 0 (mod 2), i.e., 〈XAe , YB〉 ∈

{0,±2,±4, . . .}. Moreover, for any odd subset Ao ∈ A, 〈XAo , YB〉 ≡ 1 (mod 2), i.e.,

〈XAo , YB〉 ∈ {±1,±3,±5, . . .}.

We demonstrate that the polynomial representation of Boolean functions [56, 65] is

useful to establish lower bounds for βD(n). Let f : {−1, 1}n → {−1, 1} be a Boolean

function on n variables,say y1, . . . , yn. For instance, the parity function on n variables

is simply equal to the monomial
∏n
j=1 yj . See Section 2.2.1 for definitions and notions
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3.2. Bounds for β[±i](n)

related to sign function, multilinear polynomials, representation and weak representa-

tion of boolean functions with multilinear polynomials. We have the following result by

Minsky and Papert in [49].

Lemma 3.11 The weak degree of the parity function on n variables is n.

See Section 2.2.1 for a proof of the above lemma. In what follows, we use the notion of

weak degree of the parity function to establish Theorem 3.1.

Lemma 3.12 β[±i](n) ≥ d n2ie.

Proof. Let A denote the 2n − 1 non-empty subsets of [n]. Let B be a minimum

cardinality [±i]-secting family for A. Let Y be set of incidence vectors of sets in B,

where YB ∈ Y is (−1,+1)-incidence vector corresponding to B ∈ B. We start the

analysis assuming i is even and i > 0, and then extend to odd i. For every odd set

Ao ∈ A, there exists a vector Y ∈ Y such that 〈XAo , Y 〉 − d = 0, for some d ∈

{−i + 1,−i + 3, . . . , i − 1}. Let X = (x1, . . . , xn) ∈ {0, 1}n. We use XA to denote

the incidence vector of any arbitrary set A ∈ A. Consider the polynomial M on X =

(x1, . . . , xn) as

M(X) =

 ∏
YB ∈Y

(
(〈X, YB〉)

2 − 12
) ∏

YB ∈Y

(
(〈X, YB〉)

2 − 32
)
. . .

∏
YB ∈Y

(
(〈X, YB〉)

2 − (i− 1)2
)2

.

From the definitions of Y andM , it is clear thatM(X) is (i) zero whenX = XAo for

all odd subsets Ao ∈ A; and (ii) positive when X = XAe for all even subsets Ae ∈ A.

Domain conversion and multilinearization

Recall that a vector T ∈ {0, 1}n is even if the number of 1’s in T is even and a vector

T ∈ {−1, 1}n is even if the number of −1’s in T is even. Consider the polynomial N

on Y = (y1, . . . , yn), where each yi = ±1.
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N(y1, . . . , yn) = M(x1, . . . , xn), (3.2)

where xj = 1−yj
2 , 1 ≤ j ≤ n. Note that if yi = −1 (resp. 1), then 1−yi

2 becomes

1 (resp. 0). So, if some vector Y = (y1, . . . , yn) includes an even number of −1’s,

then the vector (1−y1
2 , . . . , 1−yn

2 ) has an even number of 1’s, i.e., the reduction of the

vector (y1, . . . , yn) from the {−1, 1}n domain to (1−y1
2 , . . . , 1−yn

2 ) in the {0, 1}n domain

preserves the definition of evenness. Note that (i) N(Y ) evaluates to zero, when Y =

YAo ∈ {−1, 1}n for all odd subsets Ao ∈ A; (ii) sign(N(Y )) = sign(parity(Y )),

when Y = YAe ∈ {−1, 1}n for all even subsets Ae ∈ A. Let N ′(Y = (y1, . . . , yn)) be

the multilinear polynomial obtained from N(Y = (y1, . . . , yn)) by repeatedly replacing

each y2
i in the monomials by 1. deg(N ′(Y )) ≤ deg(N(Y )) and N ′(Y ) = N(Y ), for

vectors Y ∈ {−1, 1}n.

Clearly,N ′(Y ) weakly represents the parity function. Each term (∏YB∈Y((〈XA, YB〉)2−

j2))2, j ∈ {1, . . . , (i − 1)}, contributes a degree of 4|Y| to the degree of M(XA), and,

there are i
2 such terms. Therefore, the degree of M(XA) is 2|Y|i. Moreover, from

Equation 3.2, deg(N ′(Y )) ≤ deg(N(Y )) = deg(M(X)). However, from Lemma 3.11,

deg(N ′(Y )) ≥ n, which implies β[±i](n) = |Y| ≥ n
2i .

If i > 1 is odd, M(X) is defined as

M(X) =
∏

YB ∈Y

(
(〈X, YB〉)

2
) ∏

YB ∈Y

(
(〈X, YB〉)

2 − 22
) ∏

YB ∈Y

(
(〈X, YB〉)

2 − 42
)
. . .

∏
YB ∈Y

(
(〈X, YB〉)

2 − (i− 1)2
)2

.

Observe that M(X) vanishes for all even vectors and is positive for all odd vectors.

The polynomial N on Y = (y1, . . . , yn), where each yi = ±1, is now defined as

N(y1, . . . , yn) = −M(x1, . . . , xn), (3.3)

where xj = 1−yj
2 , 1 ≤ j ≤ n. Note that degree of M(X) is 2|Y|+ 4|Y| i−1

2 = 2|Y|i and
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the rest of the arguments are same as the previous case.

We are only left with the cases when i = 0 and i = 1. Observe that βD(n) for the

case of D = {0} and D = {−1, 0, 1} is same: any bisecting family for a family A1

consisting of only the 2n−1− 1 non-empty even subsets of [n] must bisect all the 2n− 1

subsets of [n]. In this case, take M(X) = ∏
YB∈Y ((〈X, YB〉)2) and proceed as before to

get β[±1](n) ≥ n
2 .

2

Proof of Theorem 3.1

Statement of Theorem 3.1. β[±i](n) = d n2ie, n ∈ N, i ∈ [n].

Proof. The proof follows from Lemmas 3.10 and 3.12. 2

LetA consists of 2n−1 non-empty subsets of [n]. Then, Theorem 3.1 asserts that the

construction of [±i]-secting family of cardinality d n2ie in Section 3.2.1 is indeed optimal.

Moreover, Theorem 3.1 implies that if we allow the imbalances of intersections up to
√
n, i.e., D = [±

√
n], then a family B of cardinality

√
n

2 is necessary and sufficient for

A.

Corollary 3.12.1 For D = [±
√
n], n ∈ N, βD(n) = d

√
n

2 e.

Theorem 3.1 in hindsight establishes that it is not easy to obtain bisecting families

without any restriction on structure of the collection of subsets. So, it is natural to ask

the following question - “is it possible to obtain small D-secting families for families

having relatively small number of hyperedges ideally allowing small value of |D|?”.

For instance, what is the minimum cardinality of a D-secting family provided we have

only O(n) sets inA when D = [±
√
n]. In what follows, we demonstrate that D-secting

families of cardinality much smaller than
√
n

2 can be computed when |A| is small. In

particular, when |A| = n, we show that only log n sets in the D-secting family are

needed provided D = [±
√
n].
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3.2.3 Computing β[±i](A) for arbitrary families

In Section 3.1, we discussed about the discrepancy interpretation of the bisection prob-

lems. Probabilistic method is an useful tool in computing low discrepancy colorings.

The following Chernoff’s bound is used extensively to establish upper bounds on the

discrepancy of hypergraphs.

Lemma 3.13 [16] If X = ∑n
i=1Xi is the sum of n independent random variables

distributed uniformly over {−1, 1}, then for any ∆ > 0,

P [|X| > ∆] ≤ 2e−∆2
2n .

In what follows, we obtain an upper bound on β[±i](A), when A is a family of arbitrary

sized subsets, with a simple application of Lemma 3.13.

Proof of Theorem 3.2

Statement of Theorem 3.2. Let A be a family of subsets of [n] and let |A| = m. Let

D = [±i], where i =
√

3n ln(2m)
t

and t ≤ 1
2 logm. Then, βD(A) ≤ t.

Proof. We pick a set B of t random subsets {B1, . . . , Bt} of [n], where for each j,

1 ≤ j ≤ t, a point a ∈ [n] is chosen independently and uniformly at random into Bj .

Let YBj = (y1, . . . , yn) ∈ {−1, 1}n be the incidence vector corresponding to Bj: yi is 1

if and only if i ∈ Bj . For any subset A ∈ A, |A∩Bj| − |A∩Bj| can be viewed as sum

of |A| random variables distributed uniformly over {−1, 1}. We say a subset A ∈ A

is bad with respect to subset Bj ∈ B if ||A ∩ Bj| − |A ∩ Bj|| >
√

3|A| ln(2m)
t

. Using

Chernoff’s bound, the probability that a subset A ∈ A is bad with respect to a random

subset Bj ∈ B is

P

||A ∩Bj| − |A ∩Bj|| >
√

3|A| ln(2m)
t

 ≤ 2e−
3|A| ln(2m)

2t|A| = 2( 1
2m) 3

2t .
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Any subset A is bad with respect to B if ||A ∩ Bj| − |A ∩ Bj|| >
√

3|A| ln(2m)
t

, for all

Bj ∈ B. So, A is bad with respect to B with probability at most 2t( 1
2m) 3t

2t = 2t−1.5

m1.5 .

Using union bound, the probability that some subset in A is bad with respect to B is

at most m2t−1.5

m1.5 . So, if 2t ≤
√
m (i.e., t ≤ 1

2 logm), the probability that any subset

in A is bad with respect to B is at most 1
2
√

2 . Since the failure probability is less than

1
2 , in expected two iterations, we can obtain a family B of t subsets such that for every

A ∈ A, there is an Bj ∈ B with ||A ∩Bj| − |A ∩Bj|| ≤
√

3n ln(2m)
t

. 2

Note that if i ≥
√

4.2n+ 1 and |A| = O(nc), c ∈ N, a D-secting family for A of

cardinality O(log n) can be computed as discussed above (replacing t in the expression

of i with 1
2 logm and converting the ln to log in the numerator). Note that this yields

D-secting families of size much smaller than that guaranteed by Corollary 3.12.1 for A

provided |A| is polynomial in n.

3.3 Bounds for βi(n)

In Section 3.2, we established tight bounds for βD(n) when D = [±i]. In this section,

we study βD(n), when D is a singleton set, i.e., D = {i}. Note that βi(n) = β−i(n).

Moreover, when D = {−i, i}, note that β±i(n) ≤ βi(n) ≤ 2β±i(n). Therefore, we

focus on establishing bounds for βi(n).

3.3.1 Tight bounds for β1(n)

Theorem 3.14 β1(n) = dn2 e, n ∈ N.

Proof. As mentioned in Section 3.1, when D = {1}, the family A should consist of all

the odd subsets of [n]. Let Y be a minimum sized set of {−1,+1}n vectors such that

for every odd set Ao ∈ A, there exists a vector YB ∈ Y such that 〈Ao, YB〉 − 1 = 0.

Consider the polynomial M on X = (x1, . . . , xn).

M(X) =
∏
YB∈Y

(〈X, YB〉 − 1)2 (3.4)
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3.3. Bounds for βi(n)

Note that if N ′(Y ) is obtained from M(X) after domain conversion and multilineariza-

tion, N ′ weakly represents the parity function. Using Lemma 3.11, deg(M(X)) =

2|Y| ≥ deg(N ′(Y )) ≥ n and therefore |Y| ≥ dn2 e. In what follows, we demonstrate

a construction of a family B of cardinality dn2 e such that for every odd subset A ∈ A,

there exists some B ∈ B with |A ∩B| − |A ∩B| = 1.

Consider the family A consisting of all the odd subsets of [n]. Consider the case

when n is even; the odd case is similar except the ceilings in the final expression. Note

that if n ≤ 2, we can choose B = {{1, 2}} to get the desired intersection property. So,

we consider the case when n ≥ 4. Let B1 = {1, 2, . . . , n2 + 1}. B2 is obtained from B1

by swapping {n2 + 1} with {n2 + 2}, i.e., B2 = {1, 2, . . . , n2 ,
n
2 + 2}. In general, Bj+1 is

obtained from Bj by replacing the point n2 − j + 2 with n
2 + j + 1. We stop the process

at Bn
2

= {1, 2, n, n− 1, . . . , n2 + 2}. Let B = {B1, . . . , Bn
2
}.

Claim 2 (i) For any odd subset Ao ⊆ {3, . . . , n}, there exists some Bj and Bl in

B such that |A ∩ Bj| = d |A|2 e, and |A ∩ Bl| = b |A|2 c, and (ii) For any even subset

Ae ⊆ {3, . . . , n}, there exists some Bj in B such that |A ∩Bj| = |A|
2 .

To see the correctness of the claim, consider an arbitrary set A, A ⊆ {3, . . . , n}, such

that |A∩B1|− |A∩B1| = d, for some d ∈ N\0. Then, it follows from the construction

that |A ∩Bn
2
| − |A ∩Bn

2
| = −d. Observe that for any j, 1 ≤ j ≤ n

2 − 1, the difference

between |A ∩ Bj+1| − |A ∩ Bj+1| and |A ∩ Bj| − |A ∩ Bj| is either -2, 0 or 2. So, the

claim follows.

Now, to complete the proof, we need to consider the following exhaustive case for

an odd subset Ao.

1. Ao ⊆ {3, . . . , n}: Ao has the desired intersection property using Claim 2.

2. |Ao ∩ {3, . . . , n}| = |Ao| − 1: Using Claim 2, there exists some Bj in B such that

the even subset Ao ∩ {3, . . . , n} is bisected by Bj . Clearly, |Ao ∩Bj| = d |Ao|2 e.

3. |Ao ∩ {3, . . . , n}| = |Ao| − 2: In this case, {1, 2} ⊂ Ao. From Claim 2, there

exists some Bj in B such that |A′o ∩ Bj| = b |A
′
o|

2 c, where A′o = Ao ∩ {3, . . . , n}.
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Then, |Ao ∩Bj| = d |Ao|2 e.

This establishes that β1(n) ≤ dn2 e and completes the proof of Theorem 3.14. 2

3.3.2 Bounds for βi(n), i ≥ 2

In the following section, we extend the notion of β1(n) to arbitrary values of i. Note

that when i = 0, β0(n) = β[±1](n) = dn2 e (see Theorem 3.1). The case when i = 1 is

resolved by Theorem 3.14. We assume that i ≥ 2 in the remainder of the section.

Proof of Theorem 3.3

Statement of Theorem 3.3. n−i+1
2 ≤ βi(n) ≤ n− i+ 1, n ∈ N, i ∈ [n].

Proof. LetA consist of all subsets of [n] such thatA ∈ A if and only if |A| ≡ i (mod 2)

and |A| ≥ i. LetB = {B1 = [i], B2 = B1∪{i+1}, . . . , Bn−i+1 = Bn−i∪{n}}. Observe

that B is indeed an i-secting family forA. Therefore, βi(n) ≤ n−i+1. In what follows,

we prove the lower bound for βi(n) assuming i to be an even integer greater than 1. The

case for odd i can be treated analogously.

We invoke the notion of weak representation of the parity function to establish a

lower bound. Let A denote the 2n − 1 non-empty subsets of [n]. Let B be a minimum

cardinality i-secting family for A. Let Y be the set of incidence vectors of sets in B,

where each YB ∈ Y is a (−1,+1)-incidence vector corresponding toB ∈ B. So, for any

even subset Ae ⊆ [n] with |Ae| ≥ i, there exists a vector YB ∈ Y such that 〈XAe , YB〉 −

i = 0, where XAe is the 0–1 incidence vector of Ae. We define the polynomials P , M

and F on X = (x1, . . . , xn) as follows.

M(X) =
∏
YB∈Y

(〈X, YB〉 − i)2. (3.5)

F (X) =
∑

S∈( [n]
i−1)

∏
j∈S

xj.

P (X) =M(X)F (X). (3.6)
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3.4. Bisecting k-uniform families

Observe that (i) P (X) evaluates to zero when X = XA, for all subsets A of size at

most i − 2 (since F (X) vanishes for these subsets), (ii) P (X) evaluates to zero when

X = XAe , for all even subsets Ae of size at least i (since M(X) vanishes for these

subsets), and, (iii) P (X) is strictly positive when X = XAo , for all odd subsets Ao

of size at least i − 1. Consider the polynomial Q on Y = (y1, . . . , yn), where each

yj ∈ {−1, 1}.

Q (y1, . . . , yn) = −P (x1, . . . , xn) (3.7)

where xj = 1−yj
2 , 1 ≤ j ≤ n. Let Q′(Y ) be the multilinear polynomial obtained

from Q(Y ) by replacing each occurrence of a y2
j by 1, repeatedly. Note that (i) Q′(Y )

evaluates to zero for even subsets of [n], and (ii) if Q′(Y ) is non-zero on some odd

subset Y , then sign(Q′(Y )) = sign(parity(Y )). Therefore, Q′(Y ) weakly represents

the parity function. From Lemma 3.11, Q′(Y ) has degree at least n, and deg(P (X)) =

(i− 1) + 2|Y| ≥ deg(Q′(Y )) ≥ n. So, |Y| ≥ n−i+1
2 . 2

3.4 Bisecting k-uniform families

In this section, we discuss the problem of bisection for k-uniform families. We assume

that n is even throughout the remaining part of the chapter. We focus on establishing

bounds for βD(n, k) when D = [±1].

3.4.1 Some observations for β[±1](n, k)

Observation 3.15 Let n be an even integer and B be an optimal bisecting family for a

familyA =
(

[n]
k

)
such that each subsetB ∈ B has cardinality n

2 . Then, β[±1](n, n−k) ≤

β[±1](n, k)

Proof. It is not hard to see that the bisecting family B for A is also a bisecting family

forA =
(

[n]
n−k

)
when n is even and each subset in B is a part of an equal-sized bipartition
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3.4. Bisecting k-uniform families

of n. 2

From Corollary 2.2.1, we know that β[±1](n, 2) = dlog ne. Moreover, when n is of

the form 2t, for some t ∈ N, we can obtain a bisecting family B = {A1, . . . , Alogn} for

the family A =
(

[n]
2

)
in the following way. (i) For j ∈ [n], obtain the log n bit binary

code equivalent to j − 1 and assign it to j. (ii) Elements with l-th bit as 1 form the set

Al. Using Corollary 2.2.1, B is an optimal bisecting family for A, and |Al| = n
2 , for all

Al ∈ B. Using Observation 3.15, it follows that β[±1](n, n − 2) ≤ log n, when n is a

power of 2. However, when the difference between n and k is a small constant, we can

achieve much better bounds for β[±1](n, k) as follows.

Proof of Theorem 3.7

Statement of Theorem 3.7. LetA =
(

[n]
k

)
∪
(

[n]
k+1

)
. . .∪

(
[n]
n

)
. Then, n−k+1

2 ≤ β[±1](A) ≤

min{n2 , n− k + 1}.

Proof. The upper bound of n
2 follows from Lemma 3.10. Let x = n − k. We obtain

a bisecting family for A of cardinality x + 1 in the following way. Let S and T denote

two disjoint dk2e and bk2c elements subset of [n], respectively. Let c1, . . . , cx denote the

remaining elements of [n]. Let S0 = S, and for any j ∈ [x], Sj = Sj−1 ∪ {cj}. Let

B = {S0, . . . , Sx}. We claim that B is a bisecting family for A. For any set A of

cardinality k′, k ≤ k′ ≤ n, that is not bisected by S0, |A ∩ S0| < k′

2 and |A ∩ Sx| ≥ k′

2 .

The upper bound follows from the observation that |A ∩ Sj+1| differs from |A ∩ Sj| by

at most 1.

The proof of the lower bound n−k+1
2 for β[±1](A) is in the same spirit as the proof

of the lower bound of Theorem 3.3; we give the proof for completeness. We assume

that k ≥ 2 and is even; the case when k is odd is analogous. Let B be a minimum

cardinality [±1]-secting family forA. Let Y be the set of incidence vectors of sets in B,

where each vector YB ∈ Y is a (−1,+1)-vector corresponding to B ∈ B. We define the

44



3.4. Bisecting k-uniform families

polynomials P , M and F on X = (x1, . . . , xn) as follows.

M(X) =
∏
YB∈Y

(〈X, YB〉)2 (note the difference from Equation 3.5). (3.8)

F (X) =
∑

S∈( [n]
k−1)

∏
j∈S

xj. (3.9)

P (X) =M(X)F (X). (3.10)

Observe that (i) P (X) evaluates to zero when X = XA, for all subsets A of size at

most k − 2 (since F (X) vanishes for these subsets), (ii) P (X) evaluates to zero when

X = XAe , for all even subsets Ae of size at least k (since M(X) vanishes for these

subsets), and, (iii) P (X) is strictly positive when X = XAo , for all odd subsets Ao of

size at least k − 1. Note that if Q′(Y ) is obtained from P (X) after domain conversion

and multilinearization,Q′(Y ) weakly represents the parity function. From Lemma 3.11,

Q′(Y ) has degree at least n, and deg(P (X)) = (k − 1) + 2|Y| ≥ deg(Q′(Y )) ≥ n. So,

|Y| ≥ n−k+1
2 . 2

Note that using Theorem 3.7 for k = n − 2, we get, β[±1](n, n − 2) ≤ 3. This is

surprising since (i) A =
(

[n]
n−2

)
has the same number of subsets as A =

(
[n]
2

)
, (ii) the

maximum number of sets ofA andA that can be bisected by a single set B ∈ B is (n2 )2,

and (iii) β0(n, 2) = dlog ne.

Proposition 3.16 β[±1](n, n− 2) = 3, for every even integer n greater than 4.

Proof. We only need to show that β[±1](n, n− 2) > 2. Note that since the hyperedges

are of cardinality n−2, every set in an optimal bisecting family B is of cardinality n
2−1,

n
2 , or n

2 + 1. Consider an optimal bisecting family B = {A1, A2} of cardinality 2 for

A =
(

[n]
n−2

)
. Since β[±1](n, n − 2) ≤ 3, any optimal bisecting family B for A must

contain at least one set of size other than n
2 . Otherwise, using Observation 3.15, B is

a bisecting family of cardinality less than log n for
(

[n]
2

)
, a contradiction to Corollary

2.2.1. Without loss of generality, assume that |A1| 6= n
2 . Using Observation 3.8, we can

also assume that |A1| = n
2 −1. The rest of the proof is an exhaustive case analysis based
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3.4. Bisecting k-uniform families

on the cardinality of A2. Let A1 = A1 ∩ A2 and A2 = A1 \ A2.

1. |A2| = n
2 . If at least one of A1 or A2 is of size at least 2, the (n− 2)-sized subset

missing 2 elements of [n] both from either A1 or A2 is not bisected by B. This is

the case for any n ≥ 8. For n = 6, if |A1| = 1, the set missing the element in

A1 and an element from [n] \ A1 \ A2 is not bisected by B (for example, when

n = 6, A1 = {1, 2}, A2 = {2, 3, 4}, the sets {2, 3, 4, 5} and {2, 3, 4, 6} are not

bisected). For n = 6, if |A1| = 0, for example, say A1 = {1, 2}, A2 = {3, 4, 5},

then A2 = 2, and we are done.

2. |A2| = n
2 + 1. If |A2| ≥ 2, the (n − 2)-sized subset missing 2 elements both

from A2 is not bisected by B. So, |A2| ≤ 1. If A2 = {y}, then an (n − 2)-sized

subset missing y and one element from A1 is not bisected by B. If A2 = ∅, then

any (n − 2)-sized subset missing one element each from A1 and [n] \ A2 is not

bisected by B.

3. |A2| = n
2 − 1. Using Observation 3.8, this case is identical to Case 2. 2

3.4.2 Proof of Theorem 3.4

Note that the lower bound of Ω(
√

k(n−k)
n

) for β[±1](n, k) is given by Observation 3.9.

However, when k is a constant, Observation 3.9 asserts only a Ω(
√
k) lower bound on

β[±1](n, k). An improved lower bound on β[±1](n, k) for constant k given by Theorem

3.4 is proven below.

Statement of Theorem 3.4.

β[±1](n, k) ≥


log(n− k + 2), when k is even and k

2 is odd,

d(logd n
d k2 e
e)e, for any k ≥ 2.

Proof. We prove the first lower bound given in Theorem 3.4 under the assumption that

k is even and k
2 is odd. Let B = {B1, . . . , Bt} be a bisecting family for the family

46



3.4. Bisecting k-uniform families

A =
(

[n]
k

)
. For every Bj ∈ B, let Aj be the collection of k-sized sets that are bisected

by Bj . We estimate a lower bound for t. For any family F ⊆
(

[n]
k

)
, we associate a graph

G(F) in the following way:

V (G(F)) = {S ∈
(

[n]
k
2

)
: S ⊆ A, A ∈ F}

E(G(F)) = {{S1, S2} : S1 ∩ S2 = ∅, S1, S2 ∈ V (G(F))}.

Observe that G(A) is the Kneser graph KG(n, k2 ) (for definitions and results related to

Kneser graphs, see [14, 1]). For every k-sized subset A ∈ A, there are
(
k
k
2

)
/2 edges in

E(G(A)): an edge between any two disjoint k2 sets. From the definition of A1, . . . ,At,

∪tj=1G(Aj) = G(A).

Claim 3 Each G(Aj) is a bipartite graph.

Let A ∈ Aj . Consider a fixed k
2 sized subset S of A. If |S ∩ Bj| > bk4c, S is placed in

the first partite set of G(Aj); otherwise S is placed in the second partite set of G(Aj).

Note that since k
2 is odd, |S ∩ Bj| can never be equal to |S ∩ Bj|. It is now easy to see

that there is no edge inside the first or second partite set of G(Aj).

G(A1), . . . , G(At) are bipartite graphs whose union covers G(A). Since G(A) is

the Kneser graph KG(n, k2 ), its chromatic number is n− k + 2 (see [46, 1]). So, using

Proposition 2.2, we get, t ≥ dlog(n−k+ 2)e 1. That is, β[±1](n, k) ≥ dlog(n−k+ 2)e,

when k is even and k
2 is odd. This concludes the proof of the first lower bound given by

Theorem 3.4.

To prove the second lower bound of Theorem 3.4, consider a bisecting family B =

{B1, . . . , Bt} of A =
(

[n]
k

)
. Observe that for every dk2e + 1-sized set S ⊆ [n], there

exists an Bj ∈ B such that S ∩ Bj 6= ∅ and S ∩ Bj 6= ∅. For every Bj ∈ B, let Aj be

the collection of dk2e + 1-sized sets that has a non-empty intersection with both Bj and

1Note that Proposition 2.2 does not guarantee equality since the dlog(n−k+ 2)e bipartite graphs that
cover G(A) as per Proposition 2.2 may not correspond to valid Aj’s.
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Bj . Observe that

t⋃
j=1
Aj =

(
[n]

dk2e+ 1

)
. (3.11)

Construct hypergraphsG1, . . . , Gt, where V (Gj) = [n] andE(Gj) = Aj . To each point

v ∈ [n], assign an t length 0–1 bit vector: jth bit is 1 if and only if v ∈ Bj . Color the

points in [n] with the decimal equivalent of its bit vector. Let f : [n]→ {0, 1, . . . , 2t−1}

denote this coloring. We show that none of the
(

[n]
d k2 e+1

)
sets remain monochromatic

under f . Assume for the sake of contradiction that S ∈
(

[n]
d k2 e+1

)
is monochromatic

under f . From Equation 3.11, there exists an Aj such that S ∈ Aj . From the definition

of Aj , S has non-empty intersection with both Bj and Bj . Therefore, the jth bits of the

t length 0–1 bit vectors of all the points in S cannot be the same. Therefore, S contains

at least two points of different color under f , i.e., S is not monochromatic. It is well

known that the chromatic number of
(

[n]
d k2 e+1

)
, χ(

(
[n]
d k2 e+1

)
), is d n

d k2 e
e. Since f uses 2t

colors, we have, 2t ≥ d n
d k2 e
e Therefore, β[±1](n, k) = |B| = t ≥ d(logd n

d k2 e
e)e.

This completes the proof of Theorem 3.4. 2

3.4.3 Proof of Theorem 3.5

We know that β[±1](n) = dn2 e (see Theorem 3.1). The number of n
2 -sized subsets of [n]

that can be bisected by a single subset B ⊆ [n] is at most 2(
(n

2
n
4

)
)2. This gives a trivial

lower bound of Ω(
√
n) for β[±1](n, n2 ). In this section, we prove a stronger result using

a theorem of Keevash and Long [39] which is an improvement over a theorem of Frankl

and Rödl [29]. Given q ∈ N, a set C is called a q-ary code if C ⊆ [q]n, for q ≥ 2.

For any x, y ∈ [q]n, the Hamming distance between x and y, where x = (x1, . . . , xn)

and y = (y1, . . . , yn), denoted by dH(x, y), is |{i ∈ [n] : xi 6= yi}|. For any code C,

let d(C) be the set of all the Hamming distances allowed for any x, y ∈ C. A code is

called d-avoiding if d 6∈ d(C). We have the following upper bound on the cardinality of

a d-avoiding code C as given in [39].
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Theorem 3.17 [39] Let C ⊆ [q]n and let ε satisfy 0 < ε < 1
2 . Suppose that εn < d <

(1 − ε)n and d is even if q = 2. If d 6∈ d(C), then |C| ≤ q(1−δ)n, for some positive

constant δ = δ(ε).

In what follows, we prove Theorem 3.5.

Statement of Theorem 3.5. Let c be a constant such that 0 < c < 1
2 and n ∈ N. If

cn < k < (1− c)n, then

max
{
β[±1](n, k), β[±1](n, k − 1), β[±1](n, k − 2), β[±1](n, k − 3)

}
≥ δn,

where δ = δ(c) is some real positive constant.

Proof. Consider a bisecting family B = {B1, . . . , Bm} of minimum cardinality for(
[n]
l

)
, where cn < l < (1 − c)n is even and l

2 is odd, for some constant c, 0 < c < 1
2 .

Let XA denote the 0–1 incidence vector corresponding to a set A ⊆ [n]. Let V denote

the vector space generated by the incidence vectors of B over F2. Observe that for any

A ∈
(

[n]
l

)
, there exists an B ∈ B such that |A ∩B| = l

2 . Since l
2 is odd, 〈XA, XB〉 = 1,

i.e., XA 6∈ V ⊥, where V ⊥ is the subspace of the vector space {0, 1}n over F2 which

contains all the vectors perpendicular to V . So, V ⊥ is a subspace containing no vector

of weight l. For any XB, XC ∈ V ⊥, XB + XC has weight |B4C| 6= l. Moreover, l

is even. Since cn < l < (1 − c)n, using Theorem 3.17, there exists a positive constant

δ = δ(c) such that |V ⊥| ≤ 2n(1−δ). So, dim(V ⊥) ≤ n−bδnc. It follows that dim(V ) ≥

bδnc. To complete the proof of the theorem, note that for any k, there exists an l ∈

{k, k − 1, k − 2, k − 3} such that l is even and l
2 is odd. 2

3.4.4 β[±1](n, k) and the computation of bisecting families

An important probabilistic tool used in this section is the Lovász local lemma [26]. Let

A be a family of subsets of [n]. The dependency of a set A ∈ A denoted by d(A,A)

is the number of subsets Â ∈ A, such that (i) |A ∩ Â| ≥ 1, and (ii) A 6= Â. The

dependency of a family A, denoted by d(A) or simply d, is the maximum dependency
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of any subset A in the family A. We have the following corollary of the Lovász local

lemma from [51].

Lemma 3.18 [51] Let P be a finite set of mutually independent random variables in a

probability space. Let A be a finite set of events determined by these variables, where

m = |A|. For any A ∈ A, let Γ(A) denote the set of all the events in A that depend

on A. Let d = maxA∈A |Γ(A)|. If ∀A ∈ A : P [A] ≤ p and ep(d + 1) ≤ 1, then an

assignment of the variables not violating any of the events in A can be computed using

expected 1
d

resamplings per event and expected m
d

resamplings in total.

Proof of Theorem 3.6

Statement of Theorem 3.6. For a family A consisting of k-sized subsets of [n] and

dependency d, β[±1](A) ≤
√
k
c

(ln(d+ 1) + 1), where c = 0.67.

Proof. Let A be a family of k-sized subsets of [n], A ⊆
(

[n]
k

)
, with dependency d.

Assume that k is even. Consider a family B = {B1, . . . , Bt}: each Bj ∈ B is a subset

of [n] constructed by choosing each point x ∈ [n] randomly and independently with

probability 1
2 into Bj . Let p be the probability that a fixed subset A ∈ A is bisected by

some Bj ∈ B.

p =

(
k
k
2

)
(
k
0

)
+
(
k
1

)
+ . . .+

(
k
k

) ≥ c√
k

, where c = 0.67.

So, the probability that A is not bisected by a fixed Bj is 1− p which is at most 1− c√
k
.

Therefore, the probability that A is bisected by none of the Bj ∈ B is (1 − p)t which

is at most (1 − c√
k
)t ≤ e

− ct√
k . When t ≥

√
k
c

(ln(d + 1) + 1), we get from Lemma 3.18

that there exists a bisecting family of size
√
k
c

(ln(d+ 1) + 1) for any familyA of k-sized

sets, where d denotes the dependency of family A.

In fact, if A is
(

[n]
k

)
and we choose the subsets Bj ∈ B of cardinality exactly

n
2 uniformly and independently at random from

(
[n]
n
2

)
, then p =

(
n
2
k
2
)

2

(nk)
≥ c1

√
n

(n−k)k
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(c1 ≥ 0.53). Therefore, the probability that A is bisected by none of the Bj ∈ B

is (1 − p)t. Using Lemma 3.18, we can compute a bisecting family for
(

[n]
k

)
of size

1
c1

√
k(n−k)

n
(ln(d + 1) + 1). Therefore, using Observation 3.9, β[±1](n, k) is O((ln(d +

1) + 1))-approximable.

The proof for the case when k is odd is similar to the above proof. In fact, we get a

small constant factor improvement over the bound given in Theorem 3.6. 2

Letm = |A|. Since, d+1 ≤ m ≤
(
n
k

)
< ( en

k
)k, we get, β[±1](n, k) ≤ 1

c1

√
k(n−k)

n
(lnm+

1) ≤ k
c1

√
k(n−k)

n
ln( en

k
).

3.5 Bisecting families for Hadamard set systems

The discrepancy interpretation of bisecting families leads us to the investigation of

β[±1](A) for recursive Hardamard set systems.

Definition 3.19 A Hadamard matrixH is a n×nmatrix with (i) each entry being either

+1 or −1, and (ii) any two distinct columns being orthogonal, i.e., HTH = nI , where

I is the n× n identity matrix.

By convention, the first row and first column of H are all ones. By a recursive con-

struction, H(k) of size 2k × 2k can be obtained from H(k − 1) of size 2k−1 × 2k−1 as

follows:

H(k) =

 H(k − 1) H(k − 1)

H(k − 1) −H(k − 1)

 ,

whereH(0) = 1. Note that except the first row, every other row of the Hadamard matrix

H(k) must contain equal number of 1’s and -1’s, since the columns are orthogonal and

H(k) is symmetric. Let A = 1
2(H(k) + J(k)), where J is the 2k × 2k matrix whose

every entry is +1. The matrixA corresponds to the Hadamard set systemHF (k), where

HF (k) = {A1, . . . , A2k}, and, j ∈ Ai if and only if the (i, j) entry of A is one. So,

from construction, every subset Aj ∈ HF (k) except A1 is of cardinality exactly 2k−1.
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It is a well known fact that a Hadamard set system HF of order n×n has a discrepancy

at least
√
n−1
2 [48, p. 106]. Therefore, β[±1](HF (k)) ≥ 2. In what follows, we show

that β[±1](HF (k)) ≤ 2 for all Hadamard set systems obtained from the recursively

constructed Hadamard matrix H(k), k > 1.

Consider the Hadamard set system HF (k), which is represented by the incidence

matrix A. Let B1 = {1, . . . , 2k−1}. Observe that A1 through A2k−1 of HF (k) are

bisected by B1 due to the recursive construction. A2k−1+1 represented by the 2k−1 + 1th

row of A is not bisected by B1. In fact, |A2k−1+1 ∩ B1| − |A2k−1+1 ∩ ([2k] \ B1)| =

2k−1. The subsets A2k−1+2 through A2k of HF (k) are bisected by B1 since every row,

except the first row, of H(k − 1) and −H(k − 1) contain equal number of 1’s and -1’s.

A2k−1+1 represented by the 2k−1 + 1th row of A can be bisected by a second subset

B2 = {1, . . . , 2k−2}. So, this establishes β[±1](HF (k)) = 2, k > 1.

3.6 Discussion and open problems

From the above discussion, it is clear that discrepancy of a set system A can be arbi-

trarily large as compared to β[±1](A). On the other extreme, we know that discrepancy

of a family of 2-sized subsets A of [n] cannot exceed 2, whereas β[±1](A) can be as

large as log n. Thus, there exists families A and G where β[±1](A) and disc(G) are

constants whereas disc(A) and β[±1](G) are arbitrarily large. However, this does not

rule out a possible relationship between these two parameters and other hypergraph

parameters. One possibility of making progress in this direction is obtaining tight up-

per and lower bounds for β[±1](A). Recall that the discrepancy of a family A is the

minimum i ∈ N such that β[±i](A) ≤ 1. Below, we demonstrate the usage of such

tight bounds where A = 2[n] and n is a power of 2. From Theorem 3.1, we have,

n
2 ≥ β[±1](n) ≥ 2β[±2](n) ≥ · · · ≥ 2jβ[±2j ](n). So, when j = log(n2 ), we get,

β[±2j ](n) ≤ 1. This gives a known trivial upper bound for disc(A).

As mentioned in the introduction, β[±1](E) is dlogχ(G)e for a graph G(V,E). We

know that it is impossible to approximate the chromatic number of graphs on n vertices
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3.6. Discussion and open problems

within a factor of n1−ε for any fixed ε > 0, unless NP ⊆ ZPP (see Feige and Killian

[27]). Therefore, it is not difficult to see that under the assumption NP 6⊆ ZPP , no

polynomial time algorithm can approximate β[±1](E) for an n-vertex graph G(V,E)

within an additive approximation factor of (1− ε) log n− 1, for any fixed ε > 0.
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Chapter 4

Induced bisecting families for sets of bi-

colorings

4.1 Introduction

Two n-dimensional vectors A and B, A,B ∈ Rn, are said to be trivially orthogonal

if in every coordinate i ∈ [n], at least one of A(i) or B(i) is zero. The vectors A and

B are non-trivially orthogonal if they are orthogonal, but not trivially orthogonal. For

instance, the rows of any Hardamard matrix are pairwise non-trivially orthogonal. Con-

sider the following problem: "Given the n-dimensional Hamming cube {0, 1}n, what is

the minimum cardinality of a subset V of n-dimensional {−1, 0, 1} vectors, each con-

taining exactly d non-zero entries, such that every point A ∈ {0, 1}n in the Hamming

cube has some V ∈ V which is non-trivially orthogonal to A?". It is not hard to see that

the all-zero vector and the unit vectors {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}

can never have any non-trivially orthogonal vector in {−1, 0, 1}n. Additionally, the all-

ones vector (1, . . . , 1) cannot be non-trivially orthogonal to any vector in {−1, 0, 1}n

consisting of exactly d non-zero entries, when d is odd. We call the all zero vector

(0, . . . , 0), the n unit vectors (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) (and additionally, (1, . . . , 1)

when d is odd) as trivial. Since no n-dimensional {−1, 0, 1} vector with exactly one
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4.1. Introduction

non-zero entry is non-trivially orthogonal to any non-trivial point of the Hamming cube,

we assume that d ≥ 2 in the rest of the chapter.

Definition 4.1 Let 2 ≤ d ≤ n, where d and n are integers. We define βd(n) as the

minimum cardinality of a subset V of n-dimensional {−1, 0, 1} vectors, each containing

exactly d non-zero entries, such that every non-trivial point in the Hamming cube {0, 1}n

has a non-trivially orthogonal vector V ∈ V .

In this chapter, we study the problem of estimation of bounds for βd(n).

We now define a general version of the aforementioned problem in terms of bicol-

orings of a hypergraph. Let G be a hypergraph on the vertex set [n]. Corresponding

to the trivial vectors/points of the Hamming cube, the singleton sets and the empty set

(and additionally, the set [n] when d is odd) are the trivial hyperedges or trivial subsets

of [n]. Let Y S denote a ±1 bicoloring of vertices of S ⊆ [n], i.e. Y S : S → {+1,−1},

for some S ⊆ [n]. We abuse the notation to denote the subset of vertices colored with

+1 (-1) with respect to bicoloring Y S as Y S(+1) (resp., Y S(−1)).

Definition 4.2 Given a hypergraph G, a hyperedge A ∈ E(G) is said to be induced

bisected by a bicoloring Y S of a subset S ⊆ V (G), if |A∩Y S(+1)| = |A∩Y S(−1)| 6=

0. A set Y = {Y S1 , . . . , Y St} of t bicolorings is called an induced bisecting family of

order d for G if

1. each Si ⊆ [n] has exactly d vertices, 1 ≤ i ≤ t, 2 ≤ d ≤ n, and

2. every non-trivial hyperedge A ∈ E(G) is induced bisected by at least one Y Si ,

1 ≤ i ≤ t.

Let βd(G) denote the minimum cardinality of an induced bisecting family of order d for

hypergraph G.

From Definitions 4.1 and 4.1, it is clear that the maximum of βd(G) over all hyper-

graphs G on [n] is βd(n).
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Example 4.3 Let H be the hypergraph with all the 2n − n − 1 non-trivial subsets of

[n] as hyperedges and let d = 2. For any S ∈
(

[n]
2

)
, let Y S color one point in S with

color +1 and the other with -1. Observe that Y = {Y S|S ∈
(

[n]
2

)
} forms an induced

bisecting family of order 2 for H. β2(H) ≤
(
n
2

)
. Moreover, this upper bound is also

tight: if Y {a,b} 6∈ Y , {a, b} ∈
(

[n]
2

)
, then the hyperedge {a, b} ∈ H cannot be induced

bisected.

4.1.1 Relations to bisecting families

The problem addressed in this chapter can be viewed as a generalization of the problem

of bisecting families. Let n ∈ N and let A be a family of subsets of [n]. Recall that a

family B of subsets of [n] is called a bisecting family for A, if for each A ∈ A, there

exists a B ∈ B such that |A ∩ B| ∈ {d |A|2 e, b
|A|
2 c}. In the bicoloring terminology,

letting S = [n], Y S(+1) = B, Y S(−1) = [n] \ B, the bisecting family B maps to a

collection Y of bicolorings such that for each A ∈ A, there exists a bicoloring Y ∈ Y

such that |A∩Y (+1)|−|A∩Y (−1)| ∈ {−1, 0, 1}. β[±1](n) is the minimum cardinality

of a bisecting family for the family consisting of all the non-empty subsets of [n]. The

upper bound constructions given in Chapter 3.2.1 establishing β[±1](n) = dn2 e come

from bicolorings that color all the n points, half of them of each of the two colors.

The question that naturally arises is: “are there structurally different bicolorings that

achieve similar bounds?”. One notion of such structurally different bicolorings is when

the colorings have small support, i.e., only d out of the n points can be colored at a

time. This leads us to the question of induced bisection. As it turns out, small support

translates to large cardinality of the family of bicolorings, whereas when d = n − 1,

only n bicolorings suffice.

Let Ae denote the family of non-trivial even subsets of [n]. Note that when d = n,

any induced bisecting family of order d for Ae is a bisecting family for the family

consisting of all the non-empty subsets of [n]. In other words, βn(Ae) = β[±1](n).

However, when d = n, i.e. S = [n], no odd subset of [n] can be induced bisected: this
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follows from the fact that for any odd subset A, |A ∩ Y S(+1)| − |A ∩ Y S(−1)| is odd.

When the colorings have small support, the odd subsets of [n] can be induced bisected.

Main result

In this chapter, we establish the following theorem.

Theorem 4.4 Let 2 ≤ d ≤ n, where d and n are integers. Then, 2n(n−1)
d2 ≤ βd(n) ≤(

d 2(n−1)
d−1 e
2

)
+ dn−1

d−1e(d+ 1). Moreover, βd(n) ≥ n− 1, when d is odd.

This establishes asymptotically tight bounds on βd(n) for all values of n, when d is

odd. Moreover, the bound is asymptotically tight when d ∈ O(
√
n), even if d is even.

However, when d ∈ Ω(n0.5+ε) and d is even, the above lower bound may not be asymp-

totically tight, for any ε, 0 < ε ≤ 0.5.

4.2 Some quick observations

It is not hard to see that βd(n) increases monotonically with increasing n. For any two

families F1 and F2, F1 ⊆ F2, βd(F1) ≤ βd(F2). So, in order to obtain bounds for

βd(n), it suffices to compute bounds for the family F consisting of all the non-trivial

subsets of [n].

Firstly, we invoke a coloring procedure similar to the one used in proof of Lemma

3.10 that computes a bisecting family for the 2d − 1 non-empty subsets of S, given any

S ⊆ [n], |S| = d ≥ 2.

Algorithm 1: Computing a bisecting family of size d
2 for the family F = {e|e ⊆ S}.

Data: a subset S ⊆ [n], |S| = d ≥ 2

Result: a set of bicolorings of {Y S1 , . . . , Y
S d

2 }

for i = 1 to d
2 do

Si = S;

Y Si(+1) = {i, . . . , i+ d
2 − 1};

Y Si(−1) = S \ Y Si(+1);
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4.2. Some quick observations

On a set S ⊆ [n], |S| = d ≥ 2, as input, Algorithm 1 outputs a set of bicolorings of

Y = {Y S1 , . . . , Y
S d

2 }. Proceeding along lines outlined in the proof of Lemma 3.10, it

is not hard to show that {Y S1(+1), . . . , Y S d
2 (+1)} forms a bisecting family for 2d − 1

non-empty subsets of S. In other words, for every even hyperedge Ae ⊆ S, there exists

a bicoloring Y S ∈ Y such that |Ae ∩ Y S(+1)| = |Ae ∩ Y S(−1)| 6= 0. This observation

implies that for any hyperedge B ⊆ [n], if |B ∩ S| is not zero and is even, then B is

induced bisected by some Y S ∈ Y . So, we have the following lemma.

Lemma 4.5 LetH be any hypergraph. If F ′ consists of d-sized subsets of [n] such that

for every B ∈ E(H), there exists an A′ ∈ F ′ such that |B ∩ A′| is not zero and is even,

then we can construct an induced bisecting family of cardinality |F ′|d2 forH.

When restricting the problem to the domain of even hyperedges of [n], we can use

the properties of a 2-(n, d, 1) design and show that any 2-(n, d, 1) design indeed forms

a family F ′ fulfilling the requirements of Lemma 4.5. Recall that t-(n, k, λ) design is

an incidence structure on n vertices, consisting of k-sized blocks where every t-sized

subset of vertices is present in exactly λ blocks, where k, t, λ, n ∈ N. For example, a

2-(n, d, 1) design denotes the structure on n vertices consisting of d sized blocks, where

every pair of points belong to exactly one block. It is well known that a 2-(n, d, 1)

design consists of exactly n(n−1)
d(d−1) blocks.

Proposition 4.6 Let He denote the hypergraph consisting of all the non-trivial even

hyperedges. Then, βd(He) ≤ n(n−1)
2(d−1) , when a 2-(n, d, 1) design exists.

Proof. Let D denote the set of all the d-sized blocks that form the 2-(n, d, 1) design.

Note that if every hyperedge in E(He) has an even and non-zero intersection with some

D ∈ D, then using Lemma 4.5, we get the desired upper bound. In the rest of the

proof, we show that for every hyperedge A ∈ E(He), there exists an D ∈ D such that

A ∩D 6= φ and |A ∩D| is even. For the sake of contradiction, assume that there exists

some A ∈ E(He) such that for every block D ∈ D, either A ∩D is empty, or |A ∩D|

is odd. Consider the family D′ = {A ∩ D|D ∈ D and |A ∩ D| ≥ 1}. Note that every
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block D′ ∈ D′ has an odd cardinality - otherwise, our assumption is violated. Observe

that for every pair {a, b} ∈ A, there exists exactly one D′ ∈ D′ such that {a, b} ∈ D′;

the sizes of all the D′ ∈ D′ may not be the same. So, D′ forms a design with blocks of

possibly different sizes on vertex set A. If D′a denotes the set of all the blocks in D′ that

contain a, the blocks in {D′ \ {a} : D′ ∈ D′a} partitions the set A \ {a}. Therefore,∑
D′∈D′a(|D

′|− 1) = |A|− 1. This is a contradiction since (i) |A| is even, |A|− 1 is odd,

and, (ii) each block D′ has odd cardinality by assumption. This establishes that there

exists at least one block D ∈ D such that |A ∩D| is even. 2

The necessary conditions for existence of a 2-(n, d, 1) design are (i) d − 1 divides

n− 1, and (ii)
(
d
2

)
divides

(
n
2

)
. Richard Wilson [74, 75, 76] proved that for sufficiently

large n, the necessary conditions are also sufficient. Note that even if the necessary

conditions are violated, there exist covering designs of size n(n−1)
d(d−1) (1 + o(1)) provided

d = o(n) [61] and n(n−1)
d(d−1) log n for arbitrary d [70, 44].

4.3 Lower Bounds

Let H denote the hypergraph consisting of all the non-trivial subsets of [n]. Let the set

Y = {Y S1 , . . . , Y St} of bicolorings be any optimal induced bisecting family of order d

forH, where t ∈ N.

Considering only the two sized subsets of [n], we note that every two element hy-

peredge {a, b}, a,b ∈ [n], must lie in some Si, Si ∈ {S1, . . . , St}; otherwise, no bi-

coloring in Y can induced bisect {a, b}. So, it follows that
∑
Y S∈Y

(
d
2

)
≥
(
n
2

)
, i.e.,

βd(n) ≥ n(n−1)
d(d−1) . A constant factor improvement in the lower bound can be obtained

by the following observation: the maximum number of two element subsets {a, b} that

can be induced bisected by any Y S ∈ Y , |S| = d, is d2

4 . So, we have the following

proposition.

Proposition 4.7 βd(n) ≥ 2n(n−1)
d2 .

Observe that when d is large, say d ∈ Ω(n0.5+ε), where 0 < ε ≤ 0.5, Proposition 4.7
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only yields a sublinear lower bound. When d is odd, we can prove a general lower bound

of n − 1 on βd(n) using the following version of Cayley-Bacharach theorem by Riehl

and Graham [60] on the maximum number of common zeros between n quadratics and

any polynomial P of smaller degree.

Theorem 4.8 [60] Given the n quadratics in n variables x1(x1 − 1), . . . , xn(xn − 1)

with 2n common zeros, the maximum number of those common zeros a polynomial P of

degree k can go through without going through them all is 2n − 2n−k.

Lemma 4.9 βd(n) ≥ n− 1, when d is odd.

Proof. Let B be a induced bisecting family of minimum cardinality for all the non-

trivial subsets A ⊆ [n]. Let YB denote the n-dimensional vector representing the bicol-

oringB ∈ B, i.e. YB ∈ {−1, 0, 1}n and YB contains exactly d nonzero entries. Consider

the polynomials M(X), N(X), and P (X), X ∈ {0, 1}n.

M(X = (x1, . . . , xn)) =
∏
B∈B
〈YB, X〉 . (4.1)

N(X = (x1, . . . , xn)) = (
n∑
i=1

xi)− 1. (4.2)

P (X) = M(X)N(X). (4.3)

Let XA denote the 0–1 n-dimensional incidence vector corresponding to A ⊆ [n]. Note

that M(XA) vanishes for each A ⊆ [n] except (i) the all 1’s vector, (1, . . . , 1)}, since d

is odd, and (ii) possibly the singleton sets. Since N(XA) vanishes for all singleton sets,

P (XA) vanishes on all subsets A ⊆ [n] except for the set [n] (corresponding to the all

1’s vector). Since the degree of P is |B|+1 and P in non-zero only atXA = (1, . . . , 1)},

using Theorem 4.8, we have |B| ≥ n− 1. 2

However, when d is even, the above lower bounding technique does not work since

the polynomial M may vanish at every point of the Hamming cube {0, 1}n. In this case,

we can obtain a lower bound of Ω(
√
d) (we focus on only a fixed d sized block that
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has 2d − 1 non-empty subsets out of which the maximum number of subsets that can

be induced-bisected by a single bicoloring is (
(
d
d/2

)
)2; so minimum Ω(2d/(

(
d
d/2

)
)2) =

Ω(
√
d) such bicolorings are needed).

4.4 Induced bisecting families when n is d + 1

In what follows, we consider the hypergraph H consisting of all the non-trivial hyper-

edges of [n], where n = d + 1 and demonstrate a construction of an induced bisecting

family of order d of cardinality d+ 1.

Theorem 4.10 Let d be an integer greater than 1. Then, d ≤ βd(d + 1) ≤ d + 1.

Moreover, βd(d+ 1) = d+ 1, when d is even.

Proof. We consider the cases when d is even and d is odd separately. We start our

analysis with the case when d is even.

Case 1: d is even

Let v1, . . . , vd+1 denote the d+1 vertices. Consider a circular clockwise arrangement

of d+1 slots, namely P1, . . . , Pd+1 in that order. The slots P1 to P d
2

are colored with +1,

slots P d
2 +2 to Pd+1 are colored with -1, and only slot P d

2 +1 remains uncolored. Each slot

can contain exactly one vertex and each vertex takes the color of the slot it resides in.

As for the initial configuration, let vi ∈ Pi, for 1 ≤ i ≤ d + 1. This configuration gives

the coloring Y1, where (i) Y1(+1) = {v1, . . . , v d
2
}, (ii) Y1(−1) = {v d

2 +2, . . . , vd+1},

and, (iii) the vertex v d
2 +1 remains uncolored. We obtain the second coloring Y2 from

Y1 by one clockwise rotation of the vertices in the circular arrangement. Therefore,

we have, Y2(+1) = {vd+1, v1, . . . , v d
2−1}, Y2(−1) = {v d

2 +1, . . . , vd}; the vertex v d
2

remains uncolored. See Figure 4.1 for an illustration. Similarly, repeating the process

d times, we obtain the set Y = {Y1, . . . , Yd+1} of bicolorings. We have the following

observations.

Observation 4.11 If Y induced bisects every non-trivial odd subset of [d + 1], then Y

induced bisects every non-trivial even subset of [d+ 1] as well.
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P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

P1 P2 P3 P4 P5P1 P2 P3 P4 P5

v1 v2 v3 v4 v5 v5 v1 v2 v3 v4 v4 v5 v1 v2 v3

v3 v4 v5 v1 v2 v2 v3 v4 v5 v1

X1 X2 X3

X4 X5

Figure 4.1: Vertices in (i) P1 and P2 are colored with +1, (ii) P4 and P5 are colored with
-1; the vertex in P3 remains uncolored. Y = {Y1, . . . , Y5} is an induced bisecting family
when n = d+ 1 = 5.

To prove the observation, consider an even hyperedge Ae ⊂ [d + 1], and let Y ∈ Y

be the bicoloring that induced bisects the odd hyperedge Āe = [d + 1] \ Ae. Note that

one vertex in Āe remains uncolored under Y . Otherwise, Āe cannot get induced bisected

under Y . Since |Y (+1)| = d
2 and |Āe∩Y (+1)| = |Āe|−1

2 , it follows that |Ae∩Y (+1)| =

|Y (+1) \ (Āe ∩ Y (+1))| = d
2 −

|Āe|−1
2 . Similarly, |Ae ∩ Y (−1)| = d

2 −
|Āe|−1

2 . So, Ae

is induced bisected under Y . This completes the proof of Observation 4.11.

Therefore, it suffices to prove that Y induced bisects every non-trivial odd subset of

[d + 1]. For the sake of contradiction, assume that A is an odd hyperedge not induced

bisected by Y . Let ci = |A ∩ Yi+1(+1)| − |A ∩ Yi+1(−1)|, for 0 ≤ i ≤ d. All

additions/subtractions in the subscript of c are modulo d + 1. Our assumption implies

that ci 6= 0 for all 0 ≤ i ≤ d.

Observation 4.12 |ci − ci+1| ≤ 2, for 0 ≤ i ≤ d. Furthermore, if ci > ci+1 and ci is

odd, then ci − ci+1 = 1.

The first part of Observation 4.12 follows from the construction and we omit the

details for brevity. Note that when ci is odd, the element in P d
2 +1 cannot belong to the

odd hyperedge A. This takes care of the second part of Observation 4.12.

Observe that a bicoloring Yj ∈ Y , 1 ≤ j ≤ d+1, induced bisects the odd hyperedge

A if and only if cj is 0. We know that bicoloring Y2 (Yi+1) is obtained from Y1 (Yi,

respectively) by one clockwise rotation of vertices in the circular arrangement. Thus,

during the construction of bicolorings Y1 through Yd+1, we perform a full rotation of the

vertices with respect to their starting arrangement in Y1. So, it follows that there exist

i and j such that ci is positive and ci+j is negative. Combined with the second part of
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Observation 4.12, this implies the existence of an index p such that cp = 0. This is a

contradiction to the assumption that A is not induced bisected by Y . Therefore, every

odd subset of [d + 1] is induced bisected by Y , and using Observation 4.11, the upper

bound on βd(d+ 1) follows.

To see that the upper bound is tight, observe that exactly one d-sized hyperedge can

get induced bisected under a single bicoloring - the hyperedge missing the uncolored

vertex. This completes the proof of Theorem 4.10 for even values of d.

Case 2: d is odd

The fact that βd(d + 1) ≥ d for odd values of d follows directly from Lemma 4.9.

Recall that along with the empty set and the singleton sets, the set [d + 1] becomes

trivial when d is odd. In the initial configuration, let vi ∈ Pi, for 1 ≤ i ≤ d + 1.

This configuration gives the coloring Y1, where (i) Y1(+1) = {v1, . . . , v d+1
2 −1}, (ii)

Y1(−1) = {v d+1
2 +1, . . . , vd+1}, and, (iii) the vertex v d+1

2 +1 remains uncolored. We ob-

tain the second coloring Y2 from Y1 by one clockwise rotation of the vertices in the

circular arrangement. Therefore, we have, Y2(+1) = {vd+1, v1, . . . , v d+1
2 −2}, Y2(−1) =

{v d+1
2
, . . . , vd}; the vertex v d+1

2 −1 remains uncolored. Similarly, repeating the rotation d

times, we obtain the set Y = {Y1, . . . , Yd+1} of bicolorings.

The proof for Y being an induced bisecting family for any odd hyperedge Ao (

[d + 1] is exactly similar to that given in the proof of Theorem 4.10. So, we consider

only the even hyperedges. Let ci = |A ∩ Yi+1(+1)| − |A ∩ Yi+1(−1)|, for 0 ≤ i ≤

d. All additions/subtractions in the subscript of c are modulo d + 1. For the sake of

contradiction, assume that A is an even hyperedge not induced bisected by Y . If we can

show that some cj , 0 ≤ j ≤ d, is zero, then we get the desired contradiction.

Observation 4.13 |ci − ci+1| ≤ 2, for 0 ≤ i ≤ d.

The proof of Observation 4.13 follows from the construction. Consider the sequence

(ci, ci+1, . . . , ci+d+1), where ci ≤ cj , j ∈ {i + 1, . . . , i + d + 1}, and the addition is

modulo d + 1. Since there is a full rotation of the vertex set with respect to the slots, it

follows that (i) ci ≤ 0, and (ii) there exists another index j such that cj is positive. From
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Observation 4.13, it follows that if none of the cj , j ∈ {0, . . . d}, is zero, there exists

an index p such that cp = −1 and cp+1 = 1. Note that cp = −1 asserts that A ∩ P d+1
2

is non-empty. However, under this configuration, cp+1 can never become 1. This yields

the desired contradiction. 2

We have the following corollary which gives an upper bound to the cardinality of an

induced bisecting family for arbitrary values of n.

Corollary 4.13.1 LetH be any hypergraph on vertex set V (H) = {v1, . . . , vn} and let

d ∈ [n]. Let F consist of (d+ 1)-sized subsets of V (H) such that for every B ∈ E(H),

there exists an A ∈ F with (i) |B ∩A| ≥ 2, when d is even; (ii) 2 ≤ |B ∩A| ≤ d, when

d is odd. Then, we can construct an induced bisecting family of order d of cardinality

|F|(d+ 1) forH.

Proof. For any subset A ∈ F , using the procedure used in the proof of Theorem 4.10,

we can obtain an induced bisecting family YA for all the non-trivial subsets of A, where

|YA| = d + 1. When d is even, YA induced bisects all the 2d+1 − (d + 1) − 1 non-

empty and non-singleton subsets of A; therefore, each B ∈ E(H) with |B ∩ A| ≥ 2 is

induced bisected by YA. When d is odd, YA induced bisects all but the empty set, the

singleton sets, and A; so, each B ∈ E(H) with 2 ≤ |B ∩ A| ≤ d is induced bisected

by YA. Repeating the process for each A ∈ F , we get an induced bisecting family of

cardinality |F|(d+ 1) forH. 2

Theorem 4.10 provides evidence for the following property (which is described in

Corollary 4.13.2) of the odd subsets under any circular permutation of odd number of

elements which may be of independent interest. For any circular permutation σ of [n],

a, b ∈ [n], let distσ(a, b) denote the clockwise distance between a and b with respect

to σ, which is one more than the number of elements residing between a and b in the

permutation σ in the clockwise direction.

Corollary 4.13.2 Consider any circular permutation σ of [n], where n is odd. For any

odd k-sized subset A ⊆ [n], let (a0, . . . , ak−1) be the ordering of A with respect to σ.
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Then, there exists an index i ∈ {0, . . . , k − 1} such that distσ(ai, ai+b k2 c) < n
2 and

distσ(ai+b k2 c+1, ai) < n
2 , where summation in the subscript of a is modulo k.

Proof. Consider a circular clockwise arrangement of n slots, namely P1, . . . , Pn in

that order. Put vertex σ(i) in Pi. Now, following the procedure outlined in the proof of

Theorem 4.10, obtain a bicoloring that bisects A. Pick the uncolored vertex residing in

slot Pdn2 e with respect to the bicoloring Y . Observe that this vertex satisfies the desired

property. 2

As noted in the introduction, when d = n, the odd hyperedges of a hypergraph H

can never get bisected (for example, consider any (n− 1)-sized hyperedge). LetHe and

Ho denote the hypergraphs consisting of the nontrivial even subsets and the nontrivial

odd subsets of [n], respectively. In Section 4.1, we observed that βn(He) = dn2 e, So, a

natural question in this direction is - when the hypergraph under consideration consists

of only the odd hyperedges, what is the minimum cardinality of an induced bisecting

family, provided we can choose arbitrary value of d? In what follows, we address this

problem and we have the following theorem.

Theorem 4.14 Let Ho denote the hypergraph consisting of the nontrivial odd subsets

of [d+ 2]. βd(Ho) = d
2 + 1, when d is an even integer.

Proof. In what follows, we give an explicit construction of d2 +1 sized induced bisecting

family of order d forHo to establish the upper bound. Let v1, . . . , vd+2 denote the d+ 2

vertices. As in the previous construction, consider a circular arrangement of n slots,

namely P1, . . . , Pn. The slots P1 to P d
2

are colored with +1, slots P d
2 +2 to Pd+1 are

colored with -1, and slots P d
2 +1 and Pd+2 are uncolored. Each slot can contain exactly

one vertex and each vertex is colored according to the color of the slot it resides in.

For coloring Y1, we place vertex vi in Pi, 1 ≤ i ≤ n. So, Y1(+1) = {v1, . . . , v d
2
},

Y1(−1) = {v d
2 +2, . . . , vd+1}. The vertices v d

2 +1 and vd+2 remain uncolored. We obtain

the second coloring Y2 from Y1 by one clockwise rotation of the vertices in the circular

arrangement. So, in Y2, Pi contains the element vi−1, 2 ≤ i ≤ d + 2, P1 contains
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vd+2. Similarly, repeating the process d
2 times, we obtain the set Y = {Y1, . . . , Y d

2 +1} of

bicolorings.

The proof that Y is indeed an induced bisecting family for Ho is similar to the

previous case; we omit the details for brevity. The lower bound βd(Ho) ≥ n
2 , d = n−2,

can be obtained considering only the (n − 1)-sized sets. In order to induced bisect an

(n − 1)-sized set A using any coloring Y S of a set S, |S| = n − 2, observe that (i)

Y S(+1) must be equal to Y S(−1), and both are of size n
2 − 1, (ii) S ⊂ A, and (iii)

A must miss a vertex in [n] \ S. So, any fixed (n − 2)-sized set can induced bisect at

most 2 (n− 1)-sized sets. Since there are n such sets, it follows that we need at least n2

bicoloring of (n− 2)-sized subsets to cover all the (n− 1)-sized sets. 2

4.5 Upper bounds for βd(n) and proof of Theorem 4.4

From Proposition 4.7, we know that βd(n) ≥ 2n(n−1)
d2 . In this section, we prove an upper

bound of
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d+ 1) for βd(n).

4.5.1 Deterministic construction of induced bisecting families

Lemma 4.15 βd(n) ≤
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d+ 1).

Proof idea. For simplicity, assume that d is even and d divides n. The idea for the proof

is to first partition n into d
2 -sized parts: let P = {P1, . . . , P 2n

d
} denote this partition. For

every distinct Pi, Pj ∈ P , i < j, construct distinct bicolorings where points in Pi (Pj)

are colored +1 (respectively, -1). This results in
( 2n
d
2

)
bicolorings. All subsets of [n] that

intersect with every part of P in at most one point are induced bisected by the above

set of bicolorings. So, the remaining subsets intersect with some d
2 sized part of P in at

least two points. We perform few extra bicolorings to induced bisect subsets.

Before proceeding to the proof of the above lemma, we introduce few definitions

that simplify the proof considerably. Let d be a positive even integer. Let S(n, d) =

{P1, . . . , Pd 2n
d
e} denote a partition of [n], where each P ∈ S(n, d) \ {Pd 2n

d
e} is of cardi-
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nality exactly d
2 , and |Pd 2n

d
e| ≤ d

2 . Let P 1
d 2n
d
e = Pd 2n

d
e ∪Q1, P 2

d 2n
d
e = Pd 2n

d
e ∪Q2, where

Qi denotes a fixed (d2 − |Pd 2n
d
e|)-sized subset of Pi. For an even d, we define P(n, d),

D(n, d) and B(n, d) as follows.

Definition of P(n, d)

P(n, d) =


S(n, d), if d

2 divides n

S(n, d) \ {Pd 2n
d
e} ∪ {P 1

d 2n
d
e, P

2
d 2n
d
e}, otherwise.

(4.4)

Definition of B(n, d)

d
2 divides n : For each i, j ∈

[
2n
d

]
, i < j, let Bi,j : Pi ∪ Pj → {+1,−1} denote a

bicoloring, where

Bi,j(x) =


+1, if x ∈ Pi

−1, if x ∈ Pj .

Let B(n, d) = {Bi,j|i, j ∈
[

2n
d

]
, i < j} denote this set of bicolorings.

d
2 does not divide n : For each i, j ∈

[
d2n
d
e − 1

]
, i < j, letBi,j : Pi∪Pj → {+1,−1}

denote a bicoloring, where

Bi,j(x) =


+1, if x ∈ Pi

−1, if x ∈ Pj .

Let B1,d 2n
d
e : P1 ∪ P 2

d 2n
d
e → {−1, 1} and Bi,d 2n

d
e : Pi ∪ P 1

d 2n
d
e → {−1, 1}, for

2 ≤ i ≤ d2n
d
e − 1.

B1,d 2n
d
e(x) =


+1, if x ∈ P1

−1, if x ∈ P 2
d 2n
d
e

.
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Bi,d 2n
d
e(x) =


+1, if x ∈ Pi

−1, if x ∈ P 1
d 2n
d
e

, for 2 ≤ i ≤
⌈2n
d

⌉
− 1.

Let B(n, d) = {Bi,j|i, j ∈
[
d2n
d
e
]
, i < j} denote this set of bicolorings.

Definition of D(n, d)

D(n, d) = {Dk|Dk = P2k−1 ∪ P2k, k ∈
[
dn
d
e − 1

]
} ∪ {Ddn

d
e}, where

Ddn
d
e =



P 2n
d
−1 ∪ P 2n

d
, if d

2 divides n

P1 ∪ P 2
d 2n
d
e, if d

2 does not divide n and d2n
d
e is odd

Pd 2n
d
e−1 ∪ P 2

d 2n
d
e, if d

2 does not divide n and d2n
d
e is even.

(4.5)

Proof. If d = n − 1, the statement of the lemma follows directly from Theorem 4.10.

So, we assume that d < n− 1 in the rest of the proof. We prove this lemma considering

the exhaustive cases based on whether d is even or odd, separately.

Case 1. d is even

Let P = P(n, d), B = B(n, d) and D = D(n, d).

Observation 4.16 For any C ⊆ [n], |C| ≥ 2, if |C ∩ P | ≤ 1, for all P ∈ P , then C is

induced bisected by at least one B ∈ B.

For any C ⊆ [n], |C| ≥ 2, it follows from the premise that there exist Pi, Pj ∈ P ,

i < j, such that |C ∩ Pi| = |C ∩ Pj| = 1. C is induced bisected by the bicoloring Bi,j ,

thus completing the proof of Observation 4.16.

Let C denote the family of all the subsets of [n] that are not induced bisected by

any B ∈ B. Rephrasing Observation 4.16, for each C ∈ C, there exists a P ∈ P

(and thus, a D ∈ D) such that |C ∩ P | ≥ 2 (respectively, |C ∩ D| ≥ 2). Let D′ =

{D ∪ {j}|j ∈ [n] \ D,D ∈ D}. Recall that |D| = d, where d is an even integer less
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than n − 1. So, each D′ ∈ D′ is a (d + 1)-sized set. Using Corollary 4.13.1, every

C ∈ C can be induced bisected using |D|(d + 1) bicolorings. Therefore, we have,

βd(n) ≤ |B|+ |D|(d+ 1) =
(
d 2n
d
e

2

)
+ dn

d
e(d+ 1), when d is even.

Case 2. d is odd

Let P = P(n − 1, d − 1), B = B(n − 1, d − 1) and D = D(n − 1, d − 1). Since

d − 1 is even, P , B and D are well defined. We extend the domain of each B ∈ B to

domain(B) ∪ {n}, and assign a +1 color to n in each B. Now, each B ∈ B colors

exactly d elements of [n].

Observation 4.17 For any C ⊆ [n] with |C| ≥ 2, if n 6∈ C and |C ∩ P | ≤ 1 for all

P ∈ P , then C is induced bisected by at least one B ∈ B.

The proof of this observation is exactly the same as the proof of Observation 4.16.

Let C denote the family of all the subsets of [n] that are not induced bisected by any

B ∈ B. For any D ⊆ [n], let max(D) denote the maximum integer in the set D. Let

D′ = {D ∪ {n} ∪ {max(D) + 1}|D ∈ D}, where the addition is modulo n− 1.

Observation 4.18 Let D′ = {D′1, D′2, ..., D′dn−1
d−1 e
} be the family of subsets constructed

as above. Then, |D′i ∩D′i+1| = 2, if 1 ≤ i ≤ dn−1
d−1e − 1, and |D′dn−1

d−1 e
∩D′1| ≥ 2.

Recall that each D ∈ D is a (d−1)-sized subset of [n−1], where d is an odd integer

less than n − 1. So, each D′ ∈ D′ is a (d + 1)-sized set. From Observation 4.17, it

follows that for each C ∈ C, there exists at least one D′ ∈ D′ such that |C ∩ D′| ≥ 2.

Let C ′ ⊆ C be the family of subsets of [n] such that for each C ′ ∈ C ′, there exists some

D′ ∈ D′ such that 2 ≤ |C ∩D′| ≤ d. Using Corollary 4.13.1, we can obtain an induced

bisecting family for members of C ′ of cardinality |D|(d + 1). So, it follows that any

C ∈ C \ C ′ must contain one or more elements from {D′1, D′2, ..., D′dn−1
d−1 e
} as its subsets.

For any C ∈ C \ C ′, if D′i ⊆ C, then D′i+1 ⊆ C: otherwise, from Observation 4.18,

2 ≤ |C ∩D′i+1| ≤ d and from definition of C ′, C ∈ C ′. So, it follows that C \C ′ = {[n]},
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4.5. Upper bounds for βd(n) and proof of Theorem 4.4

and [n] is a trivial set when d is odd. Therefore, the cardinality of the induced bisecting

family for [n] when d is odd is at most |B|+ |D|(d+ 1) =
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d+ 1).

2

4.5.2 Proof of Theorem 4.4

Statement of Theorem 4.4. Let 2 ≤ d ≤ n, where d and n are integers. Then, 2n(n−1)
d2 ≤

βd(n) ≤
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d+ 1). Moreover, βd(n) ≥ n− 1, when d is odd.

Proof. Theorem 4.4 follows from Proposition 4.7, Lemma 4.9 and Lemma 4.15. 2

Remark 4.19 By removing some duplicate bicolorings, we can actually improve the

upper bound for βd(n) from
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d+ 1) to
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1ed.

Theorem 4.4 asserts an upper bound of O(n) on βd(n) when d ∈ Ω(
√
n). Let k(G)

denote the minimum cardinality of any hyperedge of the hypergraph G, i.e., k(G) =

mine∈E(G) |e|. For any hypergraph G, the upper bound for βd(G) can be improved

to O(n) even if d ∈ o(
√
n) provided (d − 1)k(G) > n − 1 in the following way.

Since (d − 1)k(G) > n − 1, every hyperedge is large enough so that the family D′

constructed in all the cases of proof of Lemma 4.15 satisfies the conditions of the family

requirements of Corollary 4.13.2. Therefore, the set of bicolorings given byB = B(n, d)

(or B(n− 1, d− 1)) can be completely avoided. Thus, we have the following theorem.

Theorem 4.20 For any hypergraph G, let k(G) = min
e∈E(G)

|e|. If (d− 1)k(G) > n− 1,

then βd(G) ≤ dn−1
d−1e(d+ 1).

Remark 4.21 The proof of Theorem 4.4 is algorithmic: it yields an induced bisecting

family of cardinality at most
(
d 2(n−1)

d−1 e
2

)
+ dn−1

d−1e(d + 1) cardinality with a running time

of O(n2

d2 + n). Observe that the running time of our algorithm is asymptotically equiv-

alent to the cardinality of the family of bicolorings it outputs. Therefore, the asymptotic

running time of our algorithm is optimal whenever it outputs an asymptotically optimal

solution. Recall that Theorem 4.4 asserts tight bounds for βd(n) except for the case

where d is even and d ∈ Ω(n0.5+ε), for any 0 < ε ≤ 0.5.
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We note that if d = O(1), then Theorem 4.4 asserts that βd(n) = θ(n2). However,

the corresponding coefficients are not the same: the lower bound has the coefficient 2
d2

whereas the upper bound has the coefficient 2
(d−1)2 . It would be interesting to determine

the exact coefficient in this case. Moreover, when d is even and d ∈ Ω(n0.5+ε), for any

0 < ε ≤ 0.5, we have an upper bound of O(n) on βd(n); the lower bound for this case

is o(n). We believe that βd(n) is more close to the upper bound and tightening of the

bound for βd(n) in this case remains open.

4.6 Exactly bisecting families of intervals

Let I denote the family consisting of all the valid intervals of [n], where [n] represents

points 1 through n in R1. Let Ie (Io) denote the family of all the even (respectively,

odd) intervals of [n]. Bisecting the even intervals without any restriction on ‘the number

of colored points’ is trivial: consider the bicoloring Y .

Y (i) =


+1, if i is an odd integer,

−1, otherwise.
(4.6)

It is easy to see that for every even interval of I ∈ I, |I∩Y (+1)| = |I∩Y (−1)|. So

β(Ie) = 1. Exactly bisecting the family Io of odd intervals under induced constraints is

slightly tricky. In what follows, we show a simple construction establishing β(Io) = 2.

βd(Io) = 2, when d is unrestricted

An odd interval I ∈ Io (and corresponding subset) can start at either 4k, 4k+ 1, 4k+ 2,

4k+ 3 positions, for some integer k >= 0 and is of cardinality either 4k′+ 1 or 4k′+ 3,

integer k′ >= 0. This gives rise to 8 mutually exclusive cases.

Construction 1 Let S1 consists of all the points in [n] of the form 4m+ 2 and 4m+ 3,
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4.6. Exactly bisecting families of intervals

for integer m >= 0. The bicoloring Y S1 : S1 → {−1,+1} is defined as follows.

Y S1(i) =


+1, if i ∈ S1 is an even integer,

−1, if i ∈ S1 is an odd integer.
(4.7)

Construction 2 Let S2 consists of all the points in [n] of the form 4m and 4m + 1, for

integer m >= 0. The bicoloring Y S2 : S2 → {−1,+1} is defined as follows.

Y S2(i) =


+1, if i ∈ S2 is an even integer,

−1, if i ∈ S2 is an odd integer.
(4.8)

Claim 1 The bicolorings Y S1 and Y S2 constructed as per Constructions 1 and 2, re-

spectively, induced bisect every odd interval I of [n].

Proof. Let k, k′ be integers. In order to prove Claim 1, consider the following exhaus-

tive cases based on the starting point of intervals.

1. odd intervals starting at 4k + 1 - all such intervals are bisected by Y S1 .

2. odd intervals starting at 4k + 3 - all such intervals are bisected by Y S2 .

3. odd intervals starting at 4k with cardinality of the form 4k′ + 1- all such intervals

are bisected by Y S1 .

4. odd intervals starting at 4k with cardinality of the form 4k′ + 3- all such intervals

are bisected by Y S2 .

5. odd intervals starting at 4k + 2 with cardinality of the form 4k′ + 3- all such

intervals are bisected by Y S1 .

6. odd intervals starting at 4k + 2 with cardinality of the form 4k′ + 1- all such

intervals are bisected by Y S2 .
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This completes the proof of the claim. 2

The above discussion proves that βd(Io) ≤ 2 provided d is unrestricted (or d = n/2).

We state the result as a lemma below.

Lemma 4.22 βd(Io) ≤ 2, when d is unrestricted.

For any family I ′ of intervals of some fixed size k, it is not hard to show that one

bicoloring may be sufficient to induced bisect every interval of I ′. However, with two

different sizes of intervals in a family I ′, βd(Io) may become strictly greater than 1.

Consider a permutation V = (1, 2, 3, 4, 5, 6), and Io consists of all the odd intervals

of cardinality 3 and 5. We consider all possible cardinalities for S1 and corresponding

bicolorings Y S1 , and show that we cannot exactly bisect all the odd intervals using

one such set. Note that the cases when |S1| is 1 and 6 can be safely eliminated from

consideration.

• |S1| = 2: Let S1 = {i, j}, i < j. If j = i+1, there is a 3-sized interval containing

at most one of them and can never be induced bisected: either (j, j + 1, j + 2) or

(i− 2, i− 1, i) is a valid interval and is not induced bisected by any bicoloring of

S1. If j ≥ i+ 2, either (j − 1, j, j + 1) or (i− 1, i, i+ 1) is a valid interval and is

not induced bisected by any bicoloring of S1.

• |S1| = 3: Observe that in order to induced bisect the two 5 sized intervals

{1, 2, 3, 4, 5} and {2, 3, 4, 5, 6}, we have to color the vertices 1 and 6, and one

out of {2, 3, 4, 5} : if 1 is not colored, {2, 3, 4, 5, 6} cannot be induced bisected; if

6 is not colored, {1, 2, 3, 4, 5} cannot be induced bisected. However, if both 1 and

6 are colored, then at least one of the 3-sized interval cannot be induced bisected.

• |S1| = 4: Observe that in order to cover the two 5 sized intervals {1, 2, 3, 4, 5}

and {2, 3, 4, 5, 6}, either we color both the points 1 and 6, or both 1 and 6 must

remain uncolored: if we color vertex 1 and 6 remains uncolored, the hyperedge

{2, 3, 4, 5, 6} cannot be induced bisected. If both 1 and 6 are colored, we must
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color exactly two points out of {2, 3, 4, 5}. If {2, 3} or {2, 4} or {2, 5} is colored,

then {3, 4, 5} is not induced bisected. Similarly, in each of the cases when two

points out of {3, 4, 5} is colored, some odd interval cannot be induced bisected. If

both 1 and 6 remain uncolored, the intervals {2, 3, 4} and {3, 4, 5} are not induced

bisected.

• |S1| = 5: If all the colored points are consecutive, then the interval corresponding

to the colored points cannot be induced bisected. Otherwise, there are three col-

ored points which are consecutive, either followed or preceded by an uncolored

point. The interval corresponding to these three consecutive colored points cannot

be induced bisected.

This completes the proof of βd(Io) > 1 when n = 6. In what follows, we generalize

the arguments for arbitrary n.

Lemma 4.23 βd(Io) > 1, for n ≥ 5 for arbitrary values of d.

Proof. Assume for the sake of contradiction that βd(Io) = 1 for some n ≥ 5 and

let Y denote the bicoloring that induced bisect all odd intervals of Io. Then, for any i,

2 ≤ i ≤ n − 1, exactly two points out of the set {i − 1, i, i + 1} must be colored in

Y ; otherwise, the interval {i − 1, i, i + 1} is not induced bisected. Moreover, if some

interval {i, i+ 1, . . . , j} is colored by Y and {j + 1, j + 2} (or {i− 2, i− 1}) remains

uncolored, then {j, j + 1, j + 2} or {i − 2, i − 1, i} is not induced bisected. These

two observation enforce that Y is either of type Y S1 or Y S2 given by Construction 1 or

Construction 2, respectively. In either case, it is not hard to verify that some intervals

are never induced bisected. 2

From Lemma 4.22 and 4.23, we get the following theorem.

Theorem 4.24 βd(Io) = 2, for n ≥ 5, when d is unrestricted.

In what follows, we estimate βd(Ie), where Ie denotes the family of all the even

intervals of [n].
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Bounds for βd(Ie)

Theorem 4.25 n−1
d−1 ≤ βd(Ie) ≤ n

d
(1 + 2

d
+ o(1)).

Proof. In order to establish a lower bound, observe that we have to cover all the intervals

of size 2, and with d vertices, we can cover at most d− 1 pairs of size 2. So, we obtain

a lower bound of n−1
d−1 for βd(Ie).

In order to establish an upper bound on βd(Ie), we consider the case when d is

even and d divides n. Color the vertices S1 = 1, . . . , d with alternating +1 and -1’s

– let this coloring be Y S1 . Note that (i) all the even intervals starting at any one of

{1, 3, . . . , d − 1} are induced bisected by Y S1; (ii) all the even intervals starting at any

one of {2, 4, . . . , d} are either induced bisected by Y S1 or contain both {d, d + 1}. For

example, let [n] = {1, 2, . . . , 8} and d = 4. Then, Y1 : {1, 3} → +1, {2, 4} → −1.

Note that the only even intervals starting at any one of {1, 2, 3, 4} that are not induced

bisected by Y1 are {2, 3, 4, 5}, {2, 3, 4, 5, 6, 7}, {4, 5},{4, 5, 6, 7}; they all contain {4, 5}.

So, after repeating such colorings for n
d

disjoint subsets (S1 = {1, . . . , d}, S2 = {d+

1, . . . , 2d}, . . . , Sn
d

= {n−d+1, . . . , n}), the only intervals that are not induced bisected

by Y S1 , . . . , Y
Sn
d contains one or more of T = {{d, d+1}, {2d, 2d+1}, . . . , {n−d, n−

d+ 1}} as subsets. Choosing d
2 sets of T per bicoloring, taking their union and coloring

i and i + 1 with different colors, we need at most 2n
d2 extra bicolorings in this case. So,

the total number of bicolorings is n
d
(1 + 2

d
). In all other case (d odd or d does not divide

n), the number of extra bicolorings required is o(n
d
). So, the theorem follows. 2
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Chapter 5

The inverse problem: unbiased repre-

sentative family for a set of bicolorings

5.1 Introduction

Let B denote a set of bicolorings of [n] = {1, . . . , n}, where each bicoloring B ∈ B

maps each point x ∈ [n] to either -1 or +1. Let YB denote the n-dimensional vector

representing the bicoloring B, i.e. YB = (B(1), . . . , B(n)). A non-empty set A ⊆ [n] is

said to be an unbiased representative for a bicoloringB ∈ B if 〈XA, YB〉 = 0, whereXA

denotes the 0–1 n-dimensional incidence vector corresponding to A. We call a family

A of subsets of [n] a system of unbiased representatives (or ‘SUR’) for B if for every

bicoloring B ∈ B, there exists at least one set A ∈ A such that 〈XA, YB〉 = 0. Note

that the two monochromatic bicolorings can never have any unbiased representatives -

we call these bicolorings ‘trivial’. Let γ(B) denote the minimum cardinality of a system

of unbiased representatives for B. We define the maximum of γ(B) over all possible

families B of non-trivial bicolorings of [n] as γ(n). Note that no singleton set of [n] is a

member of any optimal system of unbiased representatives. In the questions related to

bisecting families and D-secting families, we are given a family A of subsets of [n] and

the problem is to compute a set of bicolorings B such that for every A ∈ A, there exists
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Figure 5.1: A = {1, 2, 3, 4} is an unbiased representative for attributes age and weight,
but not height.

a B ∈ B with 〈XA, YB〉 = 0. It is natural to ask the inverse problem: given a set of

bicolorings B, finding a small family of subsets satisfying the zero-dot-product property.

This yields the notion of unbiased representation. This problem has application in the

field of drug testing and formation of unbiased committees as discussed below.

Unbiased representatives are useful in testing products such as drugs over a large

population where the effectiveness (or side effect) of a new drug is studied in correla-

tion with a large set of patient attributes such as body weight, height, age, etc. Com-

plementary extremes in the attributes, such as being obese or underweight, tall or short,

and young or old, are relevant is such correlation studies. Such studies require patients

with complementary ranges of values of a certain attribute to be present in equal (or

roughly equal) numbers in the representative group for that attribute – such a group may

be deemed to be an unbiased representative for the attribute. See Figures 5.1 and 5.2 for

an illustration. However, selecting a separate sample of individuals for each attribute

having equal representation of the complementary traits is practically impossible. So,

one needs to select a family A of samples of individuals such that for any attribute B,

there exists a sample A ∈ A which has an equal representation of individuals from the

complementary traits of B. It is in the best interest to choose a family A of such groups

of representatives of the smallest possible cardinality. It is not hard to see the direct
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Figure 5.2: B = {2, 4, 5, 6} is an unbiased representative for attributes weight and
height, but not age.

mapping of this problem to the problem addressed in this paper. In a generic setting,

SURs are useful in various applications where a collection of items (like individual pa-

tients) have many attributes (like weight, height and age), where the objective is to form

a small collection of subsets of items with almost equal representation of opposite or

complementary traits for each attribute.

5.1.1 Definitions and notations

We use ‘SUR’ to denote the phrase ‘system of unbiased representatives’. For integers

n and p, let [n] denote the set {1, . . . , n}, and [n ± p] denote the set {n − p, n − p +

1, . . . , n + p}. A bicoloring B of [n] is called a k-bicoloring if the number of +1’s

in B is exactly k. For a bicoloring B : [n] → {−1, 1}, we use B(+1) (respectively,

B(−1)) to denote the set of points receiving color +1 (respectively, -1) under B. We use

YB (XA) to denote the n-dimensional ±1 vector (respectively, 0–1 vector) representing

the bicoloring B (respectively, A ⊆ [n]), i.e. YB = (B(1), . . . , B(n)). Note that

〈YB, XA〉 = 0 for some A ∈
(

[n]
r

)
implies that that r is even. Throughout the rest of the

paper, we consider only the non-trivial bicolorings and assume that every set in a SUR is

of even cardinality. Let γ(B, k, r) (respectively, γ(B, [k1, k2], [r1, r2])) be the minimum

cardinality of a SUR A for B, where (i) each B ∈ B is a bicoloring of [n] consisting
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5.1. Introduction

of exactly k +1’s (respectively, at least k1 and at most k2 +1’s), and, (ii) each A ∈ A is

an r-sized (respectively, at least r1-sized and at most r2-sized) subset of [n]. We define

γ(n, k, r) (γ(n, [k1, k2], [r1, r2])) as follows.

γ(n, k, r) = max
B

γ(B, k, r).

γ(n, [k1, k2], [r1, r2]) = max
B

γ(B, [k1, k2], [r1, r2]).

Since no singleton set of [n] can be a member of any optimal system of unbiased repre-

sentative and the monochromatic bicolorings, consisting of exactly zero (or n) +1’s, are

trivial, γ(n, [1, n− 1], [2, n]) is the same as γ(n).

5.1.2 Chapter outline

This chapter is divided into three logical sections. The first section (Section 5.2) focuses

on obtaining O(log |B|) upper bounds for SURs when (i) the collection B of bicolorings

is unrestricted or has minor restrictions, and (ii) the sets in the SURs are unrestricted or

have minor restrictions. When B consists of all the 2n − 2 non-monochromatic bicol-

orings, it is not difficult to show that n
2 ≤ γ(B, [1, n − 1], [2, n]) ≤ n − 1. Using an

application of Combinatorial Nullstellensatz [3], we improve the above lower bound to

n− 1.

Theorem 5.1 Let n be a positive integer and k ∈ [n]. Then, γ(n, [1, n − k], [2, n]) =

n− 1, where 1 ≤ k ≤ dn2 e.

We relate the problem of SUR to the hitting set problem, which in turn implies re-

lations with ‘VC-dimension’ provided εn ≤ |B(+1)| ≤ (1 − ε)n for each B ∈ B. For

such families B, this relationship assists in establishing an O(log |B|) upper bound for

cardinalities of any optimal SUR. Under a similar restriction for each B ∈ B, if it is

mandatory that each set in the SUR is of cardinality exactly r, the best upper bound ob-

tained is large (Ω(
√
r log |B|)). In order to establish an O(log |B|) upper bound for size
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of an optimal SUR under this restriction, we introduce some error in the representations

and we have the following theorem.

Theorem 5.2 Let r′ ∈ [r ± d r2e], where r ≥ 8 is an integer. Let B denote the set

of all bicolorings B ∈ {−1,+1}n, where |B(+1) − B(−1)| ≤ d, for some d ∈ N.

Then, with high probability, one can construct a family A of cardinality at most ln |B|

in O(n|B| ln |B|) time consisting of r′-sized subsets such that for every B ∈ B, there

exists a set A ∈ A with | 〈YB, XA〉 | ≤ e
√
r + dr

n
.

In the second part of the chapter (Section 5.3), we study the SUR problem where

each B ∈ B is restricted to have exactly k +1’s and each set in the SUR is required to be

of cardinality exactly r, for some r, k ∈ [n], 2 ≤ r ≤ 2k. We relate the SUR problem

under such restrictions to ‘covering’ problems, that enables us to use a deterministic

algorithm of Lovász [44] and Stein [70] to compute such a SUR in polynomial time. In

particular, for sufficiently large values of n, and k ≤ log4 log4(n0.5−ε), we use a result

of Alon et al. [5, Corollary 1.3] to establish the following asymptotically tight bound on

γ(n, k, 2k).

Theorem 5.3 For sufficiently large values of n,

(
n
k

)
(

2k
k

) ≤ γ(n, k, 2k) ≤

(
n
k

)
(

2k
k

)(1 + o(1)),

provided k ≤ log4 log4(n0.5−ε), for any 0 < ε < 0.5.

The problem of estimation of γ(n, k, r) becomes interesting when k = n
2 - the

reduction to coverings gives a lower and upper bound of max
(⌈

n
2r

⌉
, c1

√
r(n−r)
n

)
and

O(n
√

r(n−r)
n

), respectively. For r = f(n), where f(n) is an increasing function in

n, this establishes only sub-linear lower bounds for γ(n, n2 , r). We use a vector space

orthogonality argument combined with a theorem of Keevash and Long [39] to obtain a

linear lower bound on γ(n, k, r) under certain restrictions on n, k and r.
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

Theorem 5.4 Let r = 2c for any odd integer c ∈ {1, . . . , n2}. Let k be an even integer,

where εn < k < (1− ε)n for some 0 < ε < 0.5. Then, γ(n, k, r) ≥ δn, where δ = δ(ε)

is some real positive constant.

Combined with an upper bound construction given in Lemma 5.18, this establishes

an asymptotically tight bound for γ(n, n2 ,
n
2 ), when n

2 ≡ 2 (mod 4).

In the third part of the chapter (Section 5.4), we obtain the following inapproxima-

bility result for computing optimal SURs by using a result of Dinur and Steurer [25] on

the inapproximability of the hitting set problem.

Theorem 5.5 Let n and m be integers and let r ≤ (1− Ω(1)) lnm
4 . Then, no determin-

istic polynomial time algorithm can approximate the system of unbiased representative

problem for a family ofm bicolorings on [n] to within a factor (1−Ω(1)) lnm
4r of the opti-

mal when each set chosen in the representative family is required to have its cardinality

at most r, unless P=NP.

5.2 When cardinalities of sets in the ‘SUR’ are unre-

stricted or semi-restricted

5.2.1 Bounds on γ(n, [k, n− 1], [2, n])

Recall that γ(n) = maxB γ(B), where γ(B) is the cardinality of an optimal system of

unbiased representative for B. Observe that γ(B1) ≤ γ(B2) when B1 ⊆ B2. So, to estab-

lish bounds on γ(n), it suffices to consider the set of all the 2n − 2 non-monochromatic

bicolorings as B and establish bounds on γ(B). We have the following proposition.

Proposition 5.6 Let n be an integer and k ∈ [n].

(i) γ(n, [k, n− 1], [2, n]) = γ(n, [1, n− k], [2, n]).

(ii) γ(n, [1, n− k], [2, n]) = γ(n, [1, bn2 c], [2, n]), for any 1 ≤ k ≤ dn2 e.
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

(iii) γ(n, [1, n− k], [2, n]) ≤ n− 1, for 1 ≤ k ≤ n.

(iv) n
2 ≤ γ(n, 1, [2, n]) ≤ γ(n, [1, n− k], [2, n]), for 1 ≤ k ≤ n− 1.

Proof. (i) For any k-bicoloring B, any unbiased representative A for B is also an

unbiased representative for the bicoloring B′, where B′(+1) = B(−1) and B′(−1) =

B(+1).

(ii) The proof follows from the proof of Statement (i) in Proposition 5.6.

(iii) Let B denote the set of all the 2n− 2 non-monochromatic bicolorings. It is not hard

to see that A = {{1, 2}, {1, 3}, . . . , {1, n}} is a SUR of cardinality n− 1 for B.

(iv) Let B = {B||B(+1)| = 1}. So, |B| = n. For any B ∈ B, if for any A ⊆ [n],

〈YB, XA〉 = 0, then |A| = 2. Moreover, for any A ∈
(

[n]
2

)
, exactly two B ∈ B has

〈YB, XA〉 = 0. So, we need at least n
2 two sized sets to form a SUR for B. The second

inequality follows from the containment. 2

In the construction leading to the proof of Statement (iii) in Proposition 5.6, only

two-sized sets are used as unbiased representatives. We have the following slightly

non-trivial construction assuming n = 2p, for some integer p, giving similar bounds.

Let A2 = {{1, 2}, {3, 4}, . . . , {n − 1, n}} : a partition of [n] into two-sized sets. Let

A4 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n−3, n−2, n−1, n}} : a partition of [n] into four-

sized sets taken in that order. Similarly, repeating the construction for p− 2 more steps,

we obtain a sequence of partitions of [n], A2,A4, . . . ,An, where Ai is a partition of [n]

into i-sized n
i

parts, i.e.,Ai = {{1, . . . , i}, {i+ 1, . . . , 2i}, . . . , {n− i+ 1, . . . , n}}. Let

A = A2∪A4∪· · ·∪An. It follows that |A| = 2p−1 +2p−2 +. . .+1 = 2p−1 = n−1. To

see that this is indeed a SUR for the set of all the 2n−2 non-monochromatic bicolorings,

let B ∈ {−1, 1}n denote any non-trivial bicoloring of [n]. Without loss of generality,

assume that |B(+1)| ≤ |B(−1)|. Let i (2 ≤ i ≤ n) be the minimum index such that

there exists an A ∈ Ai with A \B(+1) 6= φ and A∩B(+1) 6= φ. From construction of

Ai and assumption on i, it follows that there exists consecutive parts A1, A2 ∈ A i
2

with

A1 ⊆ B(+1), A2 ∩B(+1) = φ, and A = A1 ∪ A2. So, it follows that A is an unbiased

representative for B.
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

To establish a tight lower bound on γ(n, [1, dn2 e], [2, n]) (γ(n, [1, n− 1], [2, n])), we

need the following lemma.

Lemma 5.7 Let F ∈ F(x1, . . . , xn) be a polynomial and S1, . . . , Sn be non-empty

subsets of F, for some field F. If F vanishes on all but one point (s1, . . . , sn) ∈ S1 ×

· · · × Sn ⊆ Fn, then deg(F ) ≥ ∑n
i=1(|Si| − 1).

Proof. For the sake of contradiction, assume that deg(F ) <
∑n
i=1(|Si| − 1). Consider

the polynomials.

H(xi) =
∏

s∈Si\{si}
(xi − s).

G(x1, . . . , xn) =
n∏
i=1

H(xi).

Note that deg(G) is
∑n
i=1(|Si| − 1). Let F (s1, . . . , sn) = c1 and G(s1, . . . , sn) = c2.

Then, the polynomial c2F − c1G vanishes on all points of S1 × · · · × Sn. However,

c2F − c1G has degree
∑n
i=1(|Si| − 1): the monomial x|S1|−1

1 · · ·x|Sn|−1
n has −c1 as its

coefficient. Using Combinatorial Nullstellensatz [3], there exists at least one point in

S1 × · · · × Sn where c2F − c1G is non-zero which is a contradiction. 2

Proof of Theorem 5.1

Statement of Theorem 5.1. Let n be a positive integer and k ∈ [n]. Then, γ(n, [1, n −

k], [2, n]) = n− 1, where 1 ≤ k ≤ dn2 e.

Proof. From Statements (ii) and (iii) of Proposition 5.6, we know that in order to prove

Theorem 5.1, we only need to establish a lower bound of n−1 for γ(n, [1, n−1], [2, n]).

Let B denote the set of all the 2n − 2 non-monochromatic bicolorings of [n]. Let

A be a SUR of minimum cardinality for B. Let YB (XA) denote the n-dimensional ±1

vector (respectively, 0–1 vector) representing the bicoloring B (respectively, A ⊆ [n])

Consider the polynomial P (YB), B ∈ B.
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

P (YB) =
∏
A∈A
〈XA, YB〉. (5.1)

From the definition ofA, P (YB) vanishes on all non-trivial bicolorings of [n]. Now,

consider the following polynomial P ′(X).

P ′(X = (x1, . . . , xn)) = P (YB = (1− 2x1, . . . , 1− 2xn))(x1 + . . .+ xn − n).

(5.2)

P ′(X) vanishes at every X ∈ {0, 1}n except at the point (0, . . . , 0) : P vanishes

at every X ∈ {0, 1}n except the two points (0, . . . , 0) and (1, . . . , 1) and (x1 + . . . +

xn − n) vanishes at (1, . . . , 1). P ′(X) has degree at most deg(P ) + 1 (note that one

can repeatedly replace x2
i with xi since xi ∈ {0, 1}). Using Lemma 5.7 with each

Si = {0, 1}, 1 ≤ i ≤ n, it follows that deg(P ) + 1 ≥ deg(P ′) ≥ n. So, |A| =

deg(P ) ≥ n− 1. 2

Note that in Section 5.2.1, the underlying set B of all the non-trivial bicolorings of

[n], has cardinality |B| = 2n − 2. In this case, Theorem 5.1 establishes that γ(n, [1, n−

1], [2, n]) = n − 1 = Θ(log |B|). In the following section, we match the O(log |B|)

upper bound for slightly restricted sets B of bicolorings.

5.2.2 Relation to hitting sets for arbitrary collection of bicolorings

Let S denote a collection of subsets of [n]. A subset V ⊆ [n] is a hitting set for S if for

every S ∈ S , V ∩ S is non-empty. Let H(S) denote a minimum cardinality hitting set

of S. The decision version of the Hitting set problem is: “Given the pair (S, [n]) and an

integer k as input, decide whether there exists a hitting set of cardinality at most k for

S”.

Lemma 5.8 Let B = {B0, . . . , Bm−1} ⊆ {−1,+1}n be a family of bicolorings of [n].
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

Construct the family C = {C1, . . . , C2m} where C2i+1 = Bi(+1) and C2i+2 = Bi(−1),

for 0 ≤ i ≤ m − 1. Let H = {h1, h2, h3, . . .} denote a hitting set for C. Define

A = {(h1, hq)|hq ∈ H, q > 1}. Then, A is a SUR for B of cardinality |H| − 1.

Proof. For the sake of contradiction, assume thatBi ∈ B has no unbiased representative

inA. Assume that h1 ∈ Bi(+1). SinceH is a hitting set for C, there exists some hq ∈ H

such that hq hits C2i+2 (and, thereby Bi(−1)). Then, the pair (h1, hq) is an unbiased

representative for Bi, a contradiction to our assumption. So, h1 6∈ Bi(+1). But this

implies that h1 ∈ Bi(−1). A similar contradiction can be obtained in this case. 2

Let B be restricted to a special family of bicolorings: the number of +1’s for each

B ∈ B lies in the range εn and (1 − ε)n, i.e., εn ≤ |B(+1)| ≤ (1 − ε)n, for some

fixed 0 < ε < 1
2 . Construct the family C as above and let d be the VC-dimension of

C. Note that every C ∈ C has size at least εn, for some fixed ε < 1
2 . Using a result

of Haussler and Welzl [33] which was improved by Komlos et al. [40], we can get an

‘epsilon net’ H (which is a hitting set for C) of cardinality at most d
ε
(ln 1

ε
+2 ln ln 1

ε
+6)

(see Corollary 15.6 of [55] for this exact bound). Using Lemma 5.8, it follows that we

can construct a SUR for B of cardinality d
ε
(ln 1

ε
+2 ln ln 1

ε
+6)−1. Since any family C of

VC-dimension d has cardinality at least 2d, this establishes an O(log |C|) = O(log |B|)

upper bound for the cardinality of any optimal SUR under no restriction on set sizes.

We state the result as a proposition below.

Proposition 5.9 Let 0 ≤ ε ≤ 1
2 be a constant. Let B be a family of bicolorings, where

εn ≤ |B(+1)| ≤ (1 − ε)n, for each B ∈ B. Let C be the family constructed from B as

in Lemma 5.8. Let d be the VC-dimension of C. Then, we can construct a SUR for B of

cardinality d
ε
(ln 1

ε
+ 2 ln ln 1

ε
+ 6)− 1.

In both Section 5.2.1 and 5.2.2, the O(log |B|) cardinality SURs contained sets of

small sizes (2-sized sets) as well. In what follows, we study the problem of SURs made

of large cardinality sets. In order to obtain a similar O(log |B|) bound for such a SUR,

we inevitably introduce some error in the representation.
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5.2. When cardinalities of sets in the ‘SUR’ are unrestricted or semi-restricted

5.2.3 Analysis with bias in representation

Consider the problem of estimation of γ(B) for a set of bicolorings in terms of |B|,

where (i) the number of +1’s in eachB ∈ B lies in the range {αn, αn+1, . . . , (1−α)n}

for some 0 < α < 1
2 , and (ii) each set in the SUR is of cardinality exactly r, for some

2 ≤ r ≤ n. Choosing r elements, namely x1, . . . , xr, from [n] independently and

uniformly at random, the probability p that a fixed bicoloring B ∈ B does not have

〈YB, XA〉 = 0, where A = {x1, . . . , xr}, is at most

1−
(
r
r
2

)(
αn

n

) r
2
(

(1− α)n
n

) r
2

≤ 1−C 2r√
r
α
r
2 (1−α) r2 < e

−C 2r√
r
α
r
2 (1−α)

r
2
,where C = 1√

π
.

Let A be constructed by choosing t r-element sets into A independently, where

each r-element set is chosen as described above. Using union bound, the probability

that some B ∈ B has 〈YB, XA〉 6= 0 for all A ∈ A, is |B|(e−C
2r√
r
α
r
2 (1−α)

r
2 )t. This gives

an upper bound of
√
r

C2rα
r
2 (1−α)

r
2

ln(|B|) for |A|. Using Proposition 5.11, the case when

k = n
2 and r = 2 yields an asymptotically tight example for this upper bound. We have

the following proposition.

Proposition 5.10 Let B denote a set of bicolorings, where the number of +1’s in each

B ∈ B lie in the range {αn, αn+ 1, . . . , (1− α)n} for some 0 < α < 1
2 . Let A denote

a minimum cardinality SUR for B, where each A ∈ A has cardinality exactly r. Then,

|A| ≤
√
r

C2rα r
2 (1− α) r2

ln(|B|), (5.3)

where C = 1√
π
.

When α = 1
2 − ε, for some 0 ≤ ε < 1

2 , Inequality 5.3 becomes

|A| ≤
√
r

C(1− 4ε2) r2
ln(|B|). (5.4)

Using the fact that (1− 1
m+1)m ≥ 1

e
, the right hand term is at most e( 4ε2

1−4ε2
) r2√πr ln |B|.
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Therefore, when r ∈ O(1), we have anO(ln |B|) upper bound for any optimal SUR con-

sisting of r sized sets for B. However, if r is any increasing function in n, the upper

bound given by Proposition 5.10 is large (even if ε = 1
n

, the term
√
r

C(1−4ε2)
r
2

ln(|B|) is

Ω(
√
r ln |B|)). For large values of r, in order to obtain an O(ln(|B|)) upper bound for

|A|, one may allow some error in representation studied in the following section. Let

B denote the set of all bicolorings B ∈ {−1,+1}n, where |B(+1) − B(−1)| ≤ d, for

some d ∈ N. Our problem is to find a small sized family A for B such that

1. each A ∈ A is reasonably large;

2. for every B ∈ B, there exists a set A ∈ A such that | 〈YB, XA〉 | ≤ ∆, where

∆ = ∆(r, d, n) is as small as possible.

Proof of Theorem 5.2

Statement of Theorem 5.2. Let r′ ∈ [r ± d r2e], where r ≥ 8 is an integer. Let B denote

the set of all bicolorings B ∈ {−1,+1}n, where |B(+1) − B(−1)| ≤ d, for some

d ∈ N. Then, with high probability, one can construct a family A of cardinality at most

ln |B| in O(n|B| ln |B|) time consisting of r′-sized subsets such that for every B ∈ B,

there exists a set A ∈ A with | 〈YB, XA〉 | ≤ e
√
r + dr

n
.

Proof. We construct a set A ⊂ [n] of size r′ ∈ [r ± d r2e] by picking each ele-

ment of [n] into A independently with probability r
n

. Let XA = (a1, . . . , an) denote

the corresponding random vector where each ai ∈ {0, 1}. Note that |A| = ∑n
i=1 ai.

So, using linearity of expectation, (µ =)E[|A|] = ∑n
i=1 E[ai] = r. Moreover, since

ai’s are independent, V ar[|A|] = ∑n
i=1 V ar[ai] = r(1 − r

n
). So, using the follow-

ing form of Chernoff’s bound P (|X − µ| > ∆µ) < ( e∆

(1+∆)(1+∆) )µ + ( e−∆

(1−∆)(1−∆) )µ, we

get, P (|∑n
i=1 ai − r| > 0.5r) < 0.72, for r ≥ 8. So, we can sample a family A of

cardinality t (t to be chosen later) consisting of sets of size r′ ∈ [r ± r
2 ].

Let B ∈ B be a bicoloring, where B(+1)− B(−1) = d1, where −d ≤ d1 ≤ d. Let

YB = (b1, . . . , bn) denote the corresponding bit vector, where each bi ∈ {−1,+1}. Let

Y = 〈YB, XA〉. Since Y = ∑n
i=1 aibi, Y becomes a random variable (note that aibi can
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restricted

take values {−1, 0, 1} and are independent). So, E[Y ] = ∑n
i=1 biE[ai] = d1r

n
. It follows

that V ar[Y ] = ∑n
i=1 b

2
iV ar[ai] = r(1 − r

n
). So, using Chebyshev’s inequality, we get,

P
(
|Y − d1r

n
| ≥ e

√
r
)
≤ 1

e2
(1 − r

n
) < 1

e2
. That is, the probability that |〈YB, XA〉| >

d1r
n

+e
√
r is at most 1

e2
. Let E denote the bad event that some B ∈ B has | 〈YB, XA〉 | >

dr
n

+ e
√
r for all A ∈ A. Using union bound, P (E) ≤ |B|( 1

e2
)t. Setting |B|( 1

e2
)t to at

most 1
2 , we get, t ≥ ln |B|.

Independently choose 100t subsets of [n] (call this collectionD), where eachD ∈ D

is constructed by picking an element of [n] independently with probability r
n

. Let C ⊆ D

be the sub-collection of r′-sized subsets in D, where r′ ∈ d r2e. Then, E[|C|] ≥ 28t.

Since V ar[|C|] ≤ 25t, with high probability, |C| ≥ 10t. Partition C into t-sized sets.

With high probability, one of the parts will form our desired family A that is a SUR

(with restricted error) for B. 2

Comparison between Theorem 5.2 and Proposition 5.10: Expressing d in Theorem

5.2 in terms of α in Proposition 5.10, (1− 2α)n = d. So, ε = 1
2 − α = d

2n . Substituting

this value of ε in Inequality 5.4, we get a SUR of cardinality Ω(
√
r ln |B|) with no error

for B.

5.3 When cardinalities of sets in the ‘SUR’ and +1’s in

the bicolorings are restricted

For any k-bicoloring B of [n], and any A ⊆ [n], if A is an unbiased representative for

B, then 2 ≤ |A| ≤ 2k: otherwise, 〈YB, XA〉 6= 0. Recall that γ(n, k, r) = γ(B), where

(i) B is the collection of the
(

[n]
k

)
distinct k-bicolorings, (ii) γ(B) is the cardinality of

an optimal SUR A for B, and, (iii) each A ∈ A has cardinality exactly r. We have the

following propositions.

Proposition 5.11 max(dn−k
r
e, dk

r
e) ≤ γ(n, k, r).

Proof. Consider the case when k ≤ bn2 c. It is not hard to see that with bn−k
r
c disjoint

r-sized subsets, there exists a k-sized subset (say, S) of [n] that is completely disjoint
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from the union of these r-sized subsets. The bicoloring with the points in S colored +1

and the points in [n]\S colored -1 does not have any unbiased representative among the

disjoint r-sized subsets. 2

Proposition 5.12 2
r(r−1)γ(n, k− 1, r− 2) ≤ γ(n, k, r) ≤ (n− r+ 1)γ(n, k− 1, r− 2),

for r ≥ 4.

Proof. Let Bi denote the set of all the bicolorings consisting of exactly i +1’s, for

i ∈ {k, k − 1}. Let Ar−2 denote a family of (r − 2)-sized subsets that is an opti-

mal unbiased representative family for Bk−1. For any A ∈ Ar−2, let Ā = [n] \ A =

{x1, . . . , xn−r+2}. For each A ∈ Ar−2, we construct (n − r + 1) r-sized subsets as

follows: A1 = A ∪ {x1, x2}, A2 = A ∪ {x1, x3}, · · · , An−r+1 = A ∪ {x1, xn−r+2}.

Let Ar = ∪A∈Ar−2{A1, · · · , An−r+1}. To see that Ar is a system of unbiased rep-

resentative for Bk, consider any B ∈ Bk and a (k − 1)-sized subset B′ ⊂ Bk. Let

A′ ∈ Ar−2 has 〈YB′ , XA′〉 = 0. From the construction, it follows that there is at least

one A ∈ {A′1, · · · , A′n−r+1} such that 〈YB, XA〉 = 0.

For the lower bound, consider a SURA for Bk of size γ(n, k, r). For eachA ∈ A, let

FA denote the family of
(

r
r−2

)
distinct (r− 2)-sized subsets of A. Then, A′ = ∪A∈AFA

is an unbiased representative family for Bk−1 where each set in the family is of size

exactly (r − 2). 2

A simple averaging argument gives the following lower bound.

γ(n, k, r) ≥

(
n
k

)
(
r
r
2

)(
n−r
k− r2

) . (5.5)

To establish an upper bound, we reduce this problem to a covering problem and then

make use of a result by Lovász and Stein [70, 44].

Definition 5.13 Given a family F of subsets of some finite set X , the cover number

Cov(F) of F is the minimum number of members of F whose union includes all the

points in X .
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Theorem 5.14 [70, 44, 36] If each member of F covers at most a elements and each

element in X is covered by at least v members of F , then Cov(F) ≤ |F|
v

(1 + ln a).

We have the following theorem.

Theorem 5.15 Let n be an integer, r, k ∈ [n], 2 ≤ r ≤ 2k and r is even. Then,

(
n
k

)
(
r
r
2

)(
n−r
k− r2

) ≤ γ(n, k, r) ≤

(
n
k

)
(
r
r
2

)(
n−r
k− r2

) (1 + 0.7r + ln(
(
n− r
k − r

2

)
)
)
.

Proof. Consider the following construction of a uniform family of subsets based on the(
n
[k]

)
distinct k-bicolorings and

(
n
r

)
distinct r-sized subsets of [n].

Construction 3 Corresponding to each distinct k-bicoloring B in
(

[n]
k

)
, we add a point

vB to X . Corresponding to each distinct r-sized subset A in
(

[n]
r

)
, we add a set eA to

F , where eA is the collections of all vB’s such that 〈XA, YB〉 = 0. So, eA ‘covers’ vB if

and only if vB ∈ eA.

So, |X| =
(
n
k

)
, |F| =

(
n
r

)
. Clearly, a =

(
r
r
2

)(
n−r
k− r2

)
, v =

(
k
r
2

)(
n−k
r
2

)
. It follows from the

construction that γ(n, k, r) ≤ Cov(F). So, from Theorem 5.14, we have

γ(n, k, r) ≤

(
n
r

)
(
k
r
2

)(
n−k
r
2

) (1 + ln(
(
r
r
2

)(
n− r
k − r

2

)
)
)
. (5.6)

Double counting (B,A) pairs, where B is a k-bicoloring and A is a r-sized subset

that covers B, we get

(
n

k

)(
k
r
2

)(
n− k

r
2

)
=
(
n

r

)(
r
r
2

)(
n− r
k − r

2

)
. (5.7)

Combining Inequalities 5.6 and 5.7, and from Inequality 5.5, Theorem 5.15 follows.

2
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Since Lovász-Stein method is deterministic and constructive, the above reduction

gives a deterministic polynomial time algorithm for obtaining a SUR. Moreover, from

Theorem 5.15, it follows that γ(n, k, r) is O(k lnn) approximable (k + 0.2r + (k −
r
2) ln( n−r

k− r2
) to be precise) and when k = r

2 , the approximation factor becomes O(r)

(1 + 0.7r to be exact). However, if k ≤ log4 log4(n0.5−ε) and r = 2k, for some 0 < ε <

0.5, then this upper bound can be improved further.

5.3.1 Tight upper bounds under more restrictions

From Construction 3, it is clear that the approximation factor for γ(n, k, r) in Theorem

5.15 comes as a consequence of the approximation factor for the cover number given

by Lovász-Stein Theorem. So, tighter bounds for the cover number should translate

into tighter bounds for γ(n, k, r). Let v(B,D) denote the number of r-sized sets that

are unbiased representatives for both B and D, for any pair (B,D) of k-bicolorings,

where B 6= D. Let vpair = max
B,D∈([n]

k ),
B 6=D

v(B,D). Rödl nibble method [61, 6] establishes

asymptotically tight bounds for the cover number provided the uniformity a of the fam-

ily F in Construction 3 is fixed, v → ∞, and vpair ∈ o(v). Alon et al. [5] relaxed the

condition to a = o(log v) provided vpair ∈ o( v
e2a log v ). In the estimation of γ(n, k, r), if

k ≤ log4 log4(n0.5−ε) and r = 2k, for any 0 < ε < 0.5, using Construction 3, it follows

that a < 2r ∈ O(log n) and log n ∈ o(log v). So, in order to prove Theorem 5.3, it

suffices to show that vpair ∈ o( v
e2a log v ).

Lemma 5.16 vpair ∈ o( v
e2a log v ), when r = 2k and k ≤ log4 log4(n0.5−ε), for any

0 < ε < 0.5.

Proof. In order to prove the lemma, it is important to note that v(B,D) depends

intrinsically on the cardinality of B(+1)∩D(+1). Let S be some r-sized subset of [n].

Let iB = S∩(B(+1)\D(+1)), iD = S∩(D(+1)\B(+1)), jBD = S∩(B(+1)∩D(+1))

and jBD = S ∩ ([n] \ (B(+1)∪D(+1)) (see Figure 5.3). So, S = iB ∪ iD ∪ jBD ∪ jBD.

If S is an unbiased representative for B, then |iB| + |jBD| = |iD| + |jBD| = r
2 . If S
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B(+1)
D(+1)

B(+1) ∩D(+1)

iB iD

jBD

jBD

S = iB ∪ iD ∪ jBD ∪ jBD

Figure 5.3: S is some r-sized subset of [n]. Let iB = S ∩ (B(+1) \D(+1)), iD = S ∩
(D(+1)\B(+1)), jBD = S∩(B(+1)∩D(+1)) and jBD = S∩([n]\(B(+1)∪D(+1)).
So, S = iB∪iD∪jBD∪jBD. If S is an unbiased representative forB, then |iB|+|jBD| =
|iD|+|jBD|. If S is an unbiased representative ofD, then |iD|+|jBD| = |iB|+|jBD|. So,
if S is an unbiased representative of both B and D, then |iB| = |iD| and |jBD| = |jBD|.

is an unbiased representative of D, then |iD| + |jBD| = |iB| + |jBD| = r
2 . Therefore,

if S is an unbiased representative of both B and D, then (i) |iB| = |iD| (= i, say), (ii)

|jBD| = |jBD| (= j, say), and (iii) 2i + 2j = r = 2k. Let x = |B(+1) ∩D(+1)|. We

have,

v(B,D) =
∑

i,j:j≤x,
i≤k−x,
i+j= r

2

(
x

j

)(
n− 2k + x

j

)((
k − x
i

))2

. (5.8)

Since |B(+1)| = |D(+1)| = k, applying Condition (iii), we get x = j and k −

x = i. In other words, if S is an unbiased representative of cardinality r = 2k for

both the k-bicolorings B and D, B(+1) ∪ D(+1) ⊆ S. So, for any pair B,D of k-

bicolorings, exactly one term in the summation of Equation 5.8 remains valid, namely(
x
x

)(
n−2k+x

x

) ((
k−x
k−x

))2
. For instance, when x = k − 1, v(B,D) =

(
n−k−1
k−1

)
; when x =

k−2, v(B,D) =
(
n−k−2
k−2

)
, etc. Therefore, v(B,D)

v(B′,D′) = Ω(n
k
) if |B(+1)∩D(+1)| = k−1

and |B′(+1)∩D′(+1)| ≤ k− 2. So, vpair = v(B,D), when |B(+1)∩D(+1)| = k− 1
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provided r = 2k. Thus, vpair =
(
n−k−1
r
2−1

)
, when r = 2k. Computing vpair

v
,

vpair
v

=

(
n−k−1
r
2−1

)
(
k
r
2

)(
n−k
r
2

) = r

2(n− k) . (5.9)

Note that log v = O(r log n), e2a ≤ n1−2ε since k ≤ log4 log4(n0.5−ε). So, vpaire
2a log v
v

=

O( r2 logn
n2ε )→ 0, when n→∞.

Proof of Theorem 5.3

Statement of Theorem 5.3. For sufficiently large values of n,

(
n
k

)
(

2k
k

) ≤ γ(n, k, 2k) ≤

(
n
k

)
(

2k
k

)(1 + o(1)),

provided k ≤ log4 log4(n0.5−ε), for any 0 < ε < 0.5.

Proof. From Lemma 5.16, and using the result of Alon et al. [5, Corollary 1.3] to

obtain coverings, the proof follows. 2

5.3.2 γ(n, k, r), when k = n/2

Let B denote the set of all
(
n
n
2

)
distinct n

2 -bicolorings. It is not hard to see that A =

{{1, 2}, {1, 3}, . . . , {1, n2 + 1}} is a SUR of cardinality n
2 for B. Together with Proposi-

tion 5.11, this establishes n
4 ≤ γ(n, n2 , 2) ≤ n

2 . It is easy to see that γ(n, n2 , n) = 1. For

arbitrary values of r, from Theorem 5.15 and Proposition 5.11, we have,

max
⌈ n

2r

⌉
, c1

√
r(n− r)

n

 ≤ γ(n, n2 , r) ≤ c2n

√
r(n− r)

n
, where c1 and c2 are constants.

(5.10)

When r = n
2 , this establishes a lower bound and upper bound of Ω(

√
n) and O(n

√
n),

respectively. In general, when r = f(n) is an increasing function in n, this establishes

sub-linear lower bounds for γ(n, n2 , r).
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We use an extension of a theorem of Frankl and Rödl [29] given by Keevash and

Long [39] to obtain a linear lower bound on γ(n, k, r) under certain restrictions on k

and r. Let D ⊆ [q]n be a q-ary code. For any x, y ∈ D, the Hamming distance between

x and y is the number of indices where x(i) 6= y(i), for 1 ≤ i ≤ n. The code D is

called d-avoiding if the Hamming distance between no pair of code-words in D is d.

The following upper bound for d-avoiding codes is given in [39].

Theorem 5.17 [39] Let D ⊆ [q]n and let ε satisfy 0 < ε < 1
2 . Suppose that εn < d <

(1− ε)n and d is even if q = 2. If D is d-avoiding, then |D| ≤ q(1−δ)n, for some positive

constant δ = δ(ε).

We have the following lower bound for γ(n, k, r), when r = 2c for any odd integer

c ∈ {1, . . . , n2} and εn < k < (1− ε)n, for some 0 < ε < 0.5.

Proof of Theorem 5.4

Statement of Theorem 5.4. Let r = 2c for any odd integer c ∈ {1, . . . , n2}. Let k be an

even integer, where εn < k < (1 − ε)n for some 0 < ε < 0.5. Then, γ(n, k, r) ≥ δn,

where δ = δ(ε) is some real positive constant.

Proof. Let B = {B1, . . . , B(nk)} denote the set of all the bicolorings of [n] consisting

of exactly k +1’s. We construct a family C = {C1, . . . , C(nk)}, where Ci corresponds

to the +1 colored points of Bi ∈ B. Let A be a SUR for B, where each A ∈ A has

cardinality exactly 2c for some odd number c ∈ [n]. Note that 〈YBi , XA〉 = 0 implies

that 〈XCi , XA〉 = c, where XCi denotes the 0–1 incidence vector corresponding to the

set Ci. Let V ⊂ {0, 1}n denote the vector space spanned by the vectors XA’s, A ∈ A,

over F2. Let V ⊥ ⊂ {0, 1}n denote the subspace orthogonal to V . Since A is a SUR

for B, it follows that for every Ci, there exists a set A ∈ A such that 〈XCi , XA〉 = 1(

mod 2) (since c is odd). Therefore, XCi 6∈ V ⊥, for all XCi ∈ C =
(

[n]
k

)
. In other words,

V ⊥ does not contain any vector consisting of exactly k ones. Moreover, observe that for

any x, y ∈ V ⊥, the number of ones in x+y is same as the Hamming distance between x

and y. Thus, V ⊥ is k-avoiding. Since εn < k < (1− ε)n and k is even, from Theorem
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5.17, it follows that there exists a positive constant δ = δ(ε) such that |V ⊥| ≤ 2n(1−δ).

So, dimension of V ⊥ is at most n(1 − δ). Therefore, it follows that dimension of V is

at least δn. 2

Corollary 5.17.1 γ(n, n2 , r) ≥ δn provided n
2 is even and r

2 is odd, for some 0 < δ < 1.

Let n
2 be even and r

2 be odd. From Inequality 5.10, we have γ(n, n2 , r) ∈ O(n
√
r).

When r is a constant, using Corollary 5.17.1, this upper bound is asymptotically tight.

However, for larger values of r, there can be a large gap (up to O(
√
n) when r ∈ Ω(n))

between the upper and the lower bound. In what follows, we address the problem for a

special case when r = n
2 and establish a better upper bound of n

2 on γ(n, n2 ,
n
2 ).

Lemma 5.18 γ(n, n2 ,
n
2 ) ≤ n

2 , where n
2 is any even integer.

Proof. Let B denote the set of all the bicolorings with equal number of +1’s and -1’s.

Let A1 = {1, 2, . . . , n2}, A2 = {2, 3, . . . , n2 + 1}, . . . , An
2

= {n2 ,
n
2 + 1, . . . , n− 1}. Let

ci(B) = 〈YB, XAi〉. For any B ∈ B, it is not hard to see that each ci(B) is even and

|ci(B) − ci+1(B)| ∈ {0, 2}. Since the bicolorings consist of equal number of +1’s and

-1’s, cn
2
(B) ≤ −c1(B) + 2 if c1(B) ≥ 0, and cn

2
(B) ≥ −c1(B) − 2 if c1(B) < 0. In

particular, we have c1(B)cn
2
(B) ≤ 0. Since |ci(B)− ci+1(B)| ∈ {0, 2}, this implies the

existence of an index i such that ci(B) = 〈YB, XAi〉 = 0. This concludes the proof that

γ(n, n2 ,
n
2 ) ≤ n

2 . 2

From Corollary 5.17.1 and Lemma 5.18, we have the following theorem.

Theorem 5.19 γ(n, n2 ,
n
2 ) ≤ n

2 . Moreover, γ(n, n2 ,
n
2 ) ≥ δn if n/2 is even and n/4 is

odd, for some 0 < δ < 1.

5.4 Inapproximability of the SUR problem

Firstly, we establish a hardness result of the hitting set problem for a special family of

subsets.
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Definition 5.20 A family F of subsets of [n] is complement closed on [n] if for all

F ∈ F , [n] \ F ∈ F .

Proposition 5.21 Let n and m be integers. No deterministic polynomial time algorithm

can approximate the hitting set problem for a complement closed family consisting of m

distinct subsets of [n] to within a factor of (1− Ω(1)) lnm
4 of the optimal, unless P=NP.

Proof. For the sake of contradiction, assume that there exists an algorithm ALG that

approximates the hitting set for complement closed families consisting of m sets on [n]

to within a factor of (1 − Ω(1)) lnm
4 of the optimal. We obtain a contradiction to this

assumption by the following reduction from the general hitting set problem.

Given a pair (S ′, [n]) as input to the general hitting set problem, we extend the

universe to [n + 1] by adding the element n + 1. We construct S as follows: S =

S ′ ∪ {[n+ 1] \ S|S ∈ S ′}. Note that

|S| ≤ 2|S ′| = 2m. (5.11)

Let OPT (S) (OPT (S ′)) denote an optimal solution to the hitting set problem on S

(respectively, S ′). Let ALG(S) denote a hitting set outputted by ALG on S as input.

Observe that

|OPT (S ′)| ≤ |OPT (S)| ≤ |OPT (S ′)|+ 1 ≤ 2|OPT (S ′)|. (5.12)

From our assumption, it follows that |OPT (S)| ≤ |ALG(S)| ≤ (1 − Ω(1)) ln(2m)
4

|OPT (S)| < (1 − Ω(1)) lnm
2 |OPT (S)|. Note that ALG(S) is a valid hitting set for

S ′. So, |OPT (S ′)| ≤ |OPT (S)| ≤ |ALG(S)| ≤ (1 − Ω(1)) lnm
2 |OPT (S)| < (1 −

Ω(1)) lnm
2 · 2|OPT (S ′)| = (1 − Ω(1)) lnm|OPT (S ′)|. Therefore, ALG is a (1 −

Ω(1)) lnm factor approximation algorithm for the general hitting set problem. However,

Dinur and Steurer [25] proved that it is impossible to approximate the set cover problem

to a factor of (1 − Ω(1)) lnn of the optimal, unless P=NP. This implies that hitting
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set problem cannot be approximated to a factor of (1 − Ω(1)) lnm of the optimal in

polynomial time, unless P=NP. 2

We use Proposition 5.21 to establish the following hardness result for the system of

unbiased representative problem.

Proof of Theorem 5.5

Statement of Theorem 5.5.

Let n and m be integers and let r ≤ (1−Ω(1)) lnm
4 . Then, no deterministic polyno-

mial time algorithm can approximate the system of unbiased representative problem for

a family of m bicolorings on [n] to within a factor (1 − Ω(1)) lnm
4r of the optimal when

each set chosen in the representative family is required to have its cardinality at most r,

unless P=NP.

Proof. We prove Theorem 5.5 by a reduction from an instance of the hitting set prob-

lem on complement closed families. Let S be a complement closed family on [n] of

cardinality m. From S , we construct a family B of bicolorings on [n] in the following

way: B = {B|B(+1) = S,B(−1) = [n] \ S, S ∈ S}. For the sake of contradiction,

assume that there exists an algorithm ALG that approximates the system of unbiased

representative problem for any family of bicolorings on [n] to within a factor f of the

optimal, where 1 ≤ f ≤ (1 − Ω(1)) lnm
4r and each set in the SUR is required to have

its cardinality at most r. Let OPTHIT(S) (OPTSUR(B)) denote an optimal solution to

the hitting set problem (respectively, the system of unbiased representative problem)

on S (respectively, B). Let ALG(B) denote a SUR outputted by ALG with B as its

input. Then, executing ALG on B as input, we obtain a SUR A for B such that (i)

2 ≤ |A| ≤ r for each A ∈ A, (ii) |ALG(B)| = |A| ≤ f · |OPTSUR(B)|, for some

1 ≤ f ≤ (1−Ω(1)) lnm
4r . Let V = ∪A∈AA. It follows that |V | ≤ r|A| and V is a hitting

set for S.
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From Lemma 5.8, we know that |OPTSUR(B)| ≤ |OPTHIT(S)| − 1. Therefore,

|OPTHIT(S)| ≤ |V | ≤ r · |ALG(B)| ≤ r · f · |OPTSUR(B)| < r · f · |OPTHIT(S)|.

So, ALG is a (r · f)-factor approximation algorithm for computing hitting set of S.

Since 1 ≤ f ≤ (1− Ω(1)) lnm
4r , this is a contradiction to Proposition 5.21. 2

Remark 5.22 Consider the case when the family B is restricted to a special family

of bicolorings, where the number of +1’s (or -1’s) for each B ∈ B is exactly one, i.e.

|B(+1)| = 1 (or |B(−1)| = 1). Then, the problem of system of unbiased representatives

reduces to an edge cover problem [72, 53] on a complete graph G, where for each

B ∈ B, a vertex vB(+1) (respectively, vB(−1)) is added to V (G). So, this reduction

makes the SUR problem polynomial time solvable for such families of bicolorings.
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Chapter 6

Bisection related problems

Let n be any positive integer andA be a family of subsets of [n]. A setB bisects another

set A if |A ∩ B| ∈ {d |A|2 e, b
|A|
2 c}. Recall that a family B of subsets of [n] is called a

bisecting family for another family A, if for each subset A ∈ A, there exists a subset

B ∈ B that bisectsA. This problem has been studied in detail in Chapter 3. We consider

the following extension of the notion of bisection. A familyA consisting of even subsets

of [n] is called bisection closed if for each A,B ∈ A, either A bisects B or B bisects A

(or both). In Section 6.1, we study problems related to bisection closed families.

Another interesting problem pertaining to bisecting families is obtaining bisecting

families for products of set systems. Let A1 and A2 be two family of subsets of [n1]

and [n2], respectively, where n1, n2 ∈ N. Let β[±1](A1) and β[±1](A2) be the minimum

cardinality of any bisecting family for A1 and A2, respectively. Given β[±1](A1) and

β[±1](A2), β[±1](A1ΦA2) denotes the minimum cardinality of any bisecting family for

A1ΦA2, where Φ represents some product of families A1 and A2. In Section 6.2, we

study problems related to bisecting families for products of set systems.

6.1 Bisection closed families

Definition 6.1 (Bisection closed families) A family A consisting of even subsets of [n]

is called bisection closed if for each A,B ∈ A, either A bisects B or B bisects A
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(or both). Let ϑ(n) (ϑ(n, k)) denote the maximum cardinality of any (respectively, a

k-uniform) bisection closed family on [n].

Note that the upper bound on the size of any k-uniform bisection closed family

A on [n] follows from the Fisher’s inequality [28, 7]: for every distinct A,B ∈ A,

|A ∩ B| = k
2 . Thus, ϑ(n, k) ≤ n. An easy construction of such a family of size

n− 1 is given by a star K1,n−1, where A consists of the edges of the star. A non-trivial

construction of a tight example is given by any Hardamard matrix of order 4q, q ∈ N+,

as follows. LetH denote a 4q×4q Hadamard matrix where the first row and first column

consists of all 1 entries. Since any two rows of the Hadamard matrix are orthogonal, the

rows other than the first row of H contain exactly 2q 1’s and 2q -1’s. Note that any set

of two rows which does not include the first row contain q 1’s in common and q -1’s in

common. Let H ′ denote the 0–1 matrix of dimension (4q− 1)× (4q− 1) obtained from

the H by removing (i) the first row and the first column, and, (ii) replacing the -1’s by

1’s and 1’s by 0’s. Consider the family A consisting of subsets represented by the rows

of H ′. Observe that for any A,B ∈ A, |A| = |B| = 2q and |A ∩ B| = q. So, A is a

bisection closed family on [4q − 1] with |A| = 4q − 1. Therefore, ϑ(n, k) = n.

Since A can include at most n sets of any particular cardinality (as ϑ(n, k) ≤ n),

ϑ(n) ≤ ϑ(n, k){n2 − 1} + 1 = n2

2 − n + 1 (since only one set of cardinality n exists).

Moreover, if [n] ∈ A, the only other sized subsets allowed in A are of size exactly n
2 .

In that case, |A| cannot exceed n+ 1. Therefore, if ϑ(n) > n+ 1, any bisection closed

family cannot include the set [n]. Let A and B be two subsets of [n] with |A| > 2n
3 and

|B| > 2n
3 . It is not hard to see that neither A can bisect B nor B can bisect A. So, in

any maximum cardinality bisection closed family, at most one set of cardinality strictly

more than 2n
3 can be present. Thus, ϑ(n) ≤ n2

3 + 1.

Lemma 6.2 Let A be a bisection closed family of subsets of [n] such that for any pair

A,B ∈ A, B bisects A if and only if |A| ≤ |B|. Then, A ≤ n+ 1.

Proof. The lemma follows from the Independence criterion of vectors in a vector space

[36]. 2
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Corollary 6.2.1 Let A be a bisection closed family of subsets of [n] let k1 < k2 <

. . . < kt be the different sizes of elements in A, for some 1 ≤ t ≤ n
2 . If ki > 2ki−1 for

all 2 ≤ i ≤ t, then A ≤ n+ 1.

Proof. This follows directly from Lemma 6.2.

6.1.1 Two examples

We have two different constructions of families that are bisection closed and are of

cardinality 3n
2 − 2 on [n]. Let B denote the 2-sized sets that contain 1 as the common

element, i.e. {1, 2}, {1, 3}, . . . , {1, n}; and let C denote 4-sized sets that contain {1, 2}

as the common element, i.e. {1, 2, 3, 4}, {1, 2, 5, 6}, . . . , {1, 2, n−1, n}. LetA = B∪C.

It is not hard to see that any pair of two element sets in B are pairwise bisecting since

all of them contain 1 as the common element. Similarly, any pair of four-element sets

in C are pairwise bisecting since all of them contain 1 and 2 as the common elements.

In order to verify the bisection property between a B ∈ B and a C ∈ C, without loss

of generality, consider the set {1, 2, 3, 4}. The sets {1, 2}, {1, 3}, and {1, 4} bisect

{1, 2, 3, 4}. For any B ∈ B \ {{1, 2}, {1, 3}, {1, 4}}, {1, 2, 3, 4} bisects B. Therefore,

A is indeed bisection closed and |A| = 3n
2 − 2.

The second example of a bisection closed family of cardinality 3n
2 − 2 comes from

a special construction of the Hardamard matrices. A recursive Hardamard matrix H(k)

of size 2k × 2k can be obtained from H(k − 1) of size 2k−1 × 2k−1 as follows

H(k) =

 H(k − 1) H(k − 1)

H(k − 1) −H(k − 1)

 ,

where H(0) = 1. Now consider the matrix:

M(k) =


H(k − 1) H(k − 1)

H(k − 1) −H(k − 1)

H(k − 1) −J(k − 1)

 , where J(k − 1) denotes the all ones’ matrix.
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Let M ′(k) be the matrix obtained from M(k) by removing the 1st and (2k + 1)th rows

and replacing the -1’s by 0s. M ′(k) is clearly bisection-closed and has cardinality 3n
2 −2,

where n = 2k. So, we have constructions of bisection closed families of cardinality

3n
2 −2 whereas the upper bound is O(n2). In what follows, we improve the upper bound

to O(n(logn)2

log logn ) using the notion of linear independence over vector spaces.

6.1.2 Upper bounds on ϑ(n)

Let A be a bisection closed family of subsets of [n] of maximum cardinality. Fix a

prime p > 2 and partition A into p parts {A0, . . . ,Ap−1}, where Ai = {A ∈ A||A| = i

mod p}.

Estimation of |Ai| for i > 0

Let Ai = {A1, . . . , Am} and let a1, . . . , am denote their corresponding 0–1 incidence

vectors. Construct m polynomials, f1 to fm, in the following way.

fj(x) = 〈aj, x〉 −
i

2 , for 1 ≤ j ≤ m,

Note that since |Aj| ≡ i (mod p), 〈aj, aj〉 ≡ i (mod p). Since p > 2, i 6≡ i
2 (mod p)

unless i ≡ 0 (mod p). So,

fj(x)


6= 0, if x = aj

= 0, otherwise.

So, fj’s are linearly independent in the vector space Fp{0,1}
n

over Fp (see [36,

Lemma 13.11]). Each fj is an appropriate linear combination of distinct monomials

of degree at most one. Thus, |Ai| ≤ n + 1. However, this technique is useless for

estimating |A0| since i ≡ i
2 (mod p) when i ≡ 0 (mod p).
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To overcome this problem, consider the collection P = {p1, . . . , pr} of r smallest

primes 2 < p1 < . . . < pr such that for any 2 ≤ |A| ≤ n, there exists a prime p ∈ P

with p - |A|. Note that if we repeat the steps done above for each p ∈ P , we obtain the

following upper bound.

ϑ(n) ≤ (p1 + . . .+ pr − r)(n+ 1) < (rpr − r)(n+ 1) = r(pr − 1)(n+ 1) < rprn.

(6.1)

To obtain a small cardinality set P of the desired requirement, we choose the min-

imum r such that p1p2 . . . pr > n. The product of first t primes is the Primorial

function pt# and pt# = e(1+o(1))t ln t (see [64]). Since pt#
2 = p1p2 . . . pr, setting

e(1+o(1))r ln r−1 > n, we get, r ln r > lnn + 1. Moreover, using the Prime number

theorem, the rth prime pr is at most 2r ln r. Note that by setting r = 2 lnn
ln lnn , we get

lnn + 1 < r ln r < 2 lnn for n ≥ 30. Therefore, from Inequality 6.1, we have the

following theorem.

Theorem 6.3 Let n be an integer more than 30. Then ϑ(n) ≤ 8n(lnn)2

ln lnn .

Remark 6.4 The bound obtained in Theorem 6.3 can be improved by a constant factor

by using a tighter upper bound for pr.

6.1.3 Bisection closed families restricted to sets of cardinality more

than n
2

Let A be a bisection closed family of maximum cardinality, where each A ∈ A has

cardinality strictly greater than n
2 . We use the following lemma that establishes an upper

bound on the cardinality of a collection of unit vectors under restrictions on dot products.

Lemma 6.5 Let X1, . . . , Xm be unit vectors in Rn such that 〈Xi, Xj〉 ≤ −γ, for some

0 < γ < 1 and i 6= j. Then, m ≤ 1
γ

+ 1.
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Proof. Let u = ∑n
i=1Xi. So, we have, 0 ≤ ‖u‖2 = ∑

i ‖Xi‖2 + ∑
i 6=j 〈Xi, Xj〉 ≤

m+m(m− 1)(−γ) = m(1− γ(m− 1)). It follows that m ≤ 1
γ

+ 1. 2

When the sets are viewed as vectors in {−1,+1}n, the phenomenon of bisection can

be realized by the following lemma.

Lemma 6.6 Let Y1, Y2 ∈ {−1, 1}n be incidence vectors corresponding to setsA1, A2 ⊆

[n], where Y (i) = 1 if i ∈ A and Y (i) = −1 otherwise. If A1 bisects A2, then

〈Y1, Y2〉 = n− 2|A1|.

Proof. If A1 bisects A2, then

〈Y1, Y2〉 =(n− |A1| −
|A2|

2 ) · 1 (both Y1(i), Y2(i) are -1)

+ |A2|
2 · 1 (both Y1(i), Y2(i) are 1)

+(|A1| −
|A2|

2 ) · (−1) (Y1(i) is 1, Y2(i) is -1)

+( |A2|
2 ) · (−1) (Y1(i) is -1, Y2(i) is 1)

=⇒ 〈Y1, Y2〉 =n− 2|A1|.

2

We have the following theorem.

Theorem 6.7 Let n be an even integer. LetA be a bisection closed family of maximum

cardinality, where each A ∈ A has cardinality strictly greater than n
2 and |A| is even.

Then |A| ≤ n
2 + 1.

Proof. For any A ∈ A, let YA ∈ Rn be defined as

YA(i) =


1√
n
, if i ∈ A

− 1√
n
, if i 6∈ A.

(6.2)

In particular, ‖YA‖2 = 1. So, YA is a unit vector corresponding to A.
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From Lemma 6.6, we have the following observation regarding the dot products of

distinct YA and YB.

〈YA, YB〉 =


n−2|A|
n

, if A bisects B,

n−2|B|
n

, if B bisects A.
(6.3)

Since |A| > n
2 and |B| > n

2 , it follows that 〈YA, YB〉 ≤ − 2
n

. So, using Lemma 6.5, we

get, |A| ≤ n
2 + 1. 2

6.1.4 Bisection closed families restricted to sets of cardinality n
2±

√
n

2δ

From Equation 6.3, it is clear that in order to use Lemma 6.5 for establishing a linear

upper bound for cardinality of a bisection closed family, the sets must be of cardinality

strictly more than n
2 . To obtain linear upper bounds when sets are of cardinality n

2 ±
√
n

2δ

when δ > 1, we use the following lemma (see [4, 17]).

Lemma 6.8 [4, 17] Let A be an m × m real symmetric matrix with ai,i = 1 and

|ai,j| ≤ ε for all i 6= j. Let tr(A) denote the trace of A, i.e., the sum of the diagonal

entries of A. Let rk(A) denote the rank of A. Then,

rk(A) ≥ (tr(A))2

tr(A2) = m2

m+m(m− 1)ε2

.

Proof. Let λ1, . . . , λm denote the eigenvalues of A. Since only rk(A) eigenvalues of

A are nonzero, tr(A) = ∑m
i=1 λi = ∑rk(A)

i=1 λi = m. Further, tr(A2) = ∑m
i=1 λ

2
i =∑rk(A)

i=1 λ2
i ≤ m + m(m− 1)ε2. Using the Cauchy-Schwartz Inequality, (∑rk(A)

i=1 λi)2 ≤

rk(A)∑rk(A)
i=1 λ2

i . 2

We have the following theorem.
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Theorem 6.9 Let n be an even integer and let δ > 1. LetA be a bisection closed family

of maximum cardinality, where eachA ∈ A has cardinality in the range [n2−
√
n

2δ ,
n
2 +
√
n

2δ ].

and |A| is even. Then, |A| ≤ δ2

δ2−1n.

Proof. Let A = {A1, . . . , Am} denote a bisection closed family where |Ai| ∈ [n2 −
√
n

2δ ,
n
2 +

√
n

2δ ] and |Ai| is even, for each 1 ≤ i ≤ m. With respect to each Ai, let

YAi ∈ {−1,+1}n denote the unit vector constructed as in the proof of Theorem 6.7.

Let B be the m × n matrix with YA1 , . . . , YAm as its rows. Then, from Equation 6.3, it

follows that BBT is an m × m real symmetric matrix with the diagonal entries being

1 and the absolute value of any other entry being |n−2|A|
n
| ≤ 1

δ
√
n

. From Lemma 6.8,

rk(BBT ) ≥ m
1+m−1

δ2n
> m

1+ m
δ2n

. We know that rk(BBT ) ≤ n. So, n ≥ m − m
δ2 which

completes the proof of the theorem. 2

6.2 Hypergraph products

In this section, we study the problem of bisection for products of set systems. Let A1

and A2 be two family of subsets of [n1] and [n2], respectively, where n1, n2 ∈ N. Let

β[±1](A1) and β[±1](A2) be the cardinality of any minimum bisecting family for A1

and A2, respectively. We consider 3 different product notions and study β[±1](A1ΦA2),

where Φ represents any one of the products.

All the product families A1ΦA2 have ground set X = [n1]× [n2] where × denotes

the Cartesian product. The product sets differ only on the way the subsets are derived.

Let A = A1ΦA2.

6.2.1 Cartesian Products

In the case when Φ is the Cartesian product ×, the product set A is defined as follows.

A = A1 ×A2 = {x× f2|x ∈ [n1] and f2 ∈ A2} ∪ {f1 × y|f1 ∈ A1 and y ∈ [n2]}.
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Here, x× f2 = {(x, a) : a ∈ f2} and has cardinality |f2|.

If at least one of A1 and A2 is a family of only even subsets, then we can show that

β[±1](A) ≤ β[±1](A1) + β[±1](A2) as follows. Let B1 be an optimal bisecting family of

cardinality t for A1 and let B2 be an optimal bisecting family of cardinality r for A2,

where t, r ∈ N. A bisecting family B of cardinality t + r for A can be constructed as

follows. B = {A× [n2]|A ∈ B1} ∪ {[n1]×B|B ∈ B2}.

Example 6.10 Let n1 = {1, 2, 3, 4}, n2 = {5, 6, 7, 8}. Then, X = [n1] × [n2] =

{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (

4, 6), (4, 7), (4, 8)}. Let A1 = {{1, 2}, {1, 3}, {3, 4}}. Let A2 = {{5, 6, 7}, {7, 8}}.

Then,B1 = {1, 4} andB2 = {7} bisectsA1 andA2, respectively. From definition, it fol-

lows that A = A1ΦA2 = {{(1, 5), (1, 6), (1, 7)}, {(1, 7), (1, 8)}, {(2, 5), (2, 6), (2, 7)},

{(2, 7), (2, 8)}, {(3, 5), (3, 6), (3, 7)}, {(3, 7), (3, 8)}, {(4, 5), (4, 6), (4, 7)}, {(4, 7), (4, 8)

}, {(1, 5), (2, 5)}, {(1, 5), (3, 5)}, {(3, 5), (4, 5)}, {(1, 6), (2, 6)}, {(1, 6), (3, 6)}, {(3, 6),

(4, 6)}, {(1, 7), (2, 7)}, {(1, 7), (3, 7)}, {(3, 7), (4, 7)}, {(1, 8), (2, 8)}, {(1, 8), (3, 8)}, {(

3, 8), (4, 8)}}.B = {{(1, 5), (1, 6), (1, 7), (1, 8), (4, 5), (4, 6), (4, 7), (4, 8)}, {(1, 7), (2, 7),

(3, 7), (4, 7)}} is a bisecting family for A.

However, this construction does not work when both A1 and A2 includes odd subsets.

We have a non-trivial construction improving the upper bound and we also show

that the bound obtained is tight. This construction also works irrespective of whether

A1 and A2 includes odd subsets or not.

Theorem 6.11 LetA1 andA2 be families consisting of subsets of [n1] and [n2], respec-

tively. Then,

β[±1](A1 ×A2) = max(β[±1](A1), β[±1](A2)).

Proof. Firstly, we show that β[±1](A1 × A2) ≤ max(β[±1](A1), β[±1](A2)). Let B1 =

{B11, . . . , B1t} be an optimal bisecting family for A1 and let B2 = {B21, . . . , B2r}
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be an optimal bisecting family for A2, where t, r ∈ N. Without loss of generality,

assume that t ≥ r. A bisecting family B = {B1, . . . , Bt} of cardinality t for A can be

constructed as follows. For any point (x, y) ∈ X , where x ∈ [n1] and y ∈ [n2], add

(x, y) to Bj if either x ∈ B1j and y 6∈ B2j or x 6∈ B1j and y ∈ B2j . The set B2j is

empty for r < j ≤ t. We claim that B is indeed a bisecting family for A. Consider

an element A = {(x, y1), (x, y2), . . . , (x, yk)} of A. {y1, . . . , yk} must be an element of

A2. Let B2j ∈ B2 be the subset that bisects {y1, . . . , yk}. As per the construction of Bj ,

Bj bisects A = {(x, y1), (x, y2), . . . , (x, yk)} irrespective of whether x ∈ B1j or not.

Similarly, for any A = {(x1, y), (x2, y), . . . , (xk, y)}, it is easy to see that A is bisected

by Bj ∈ B whenever {x1, . . . , xk} is bisected by B1j . This concludes the proof of the

upper bound.

To see that β[±1](A1×A2) ≥ max(β[±1](A1), β[±1](A2)), observe that for any fixed

x ∈ [n1] (and y ∈ [n2]), (i) Xx = {x} × [n2] (respectively, Xy = [n1] × {y}) is

isomorphic to [n2] (respectively, [n1]), and, (ii) Ax = {{x} × f2 : f2 ∈ A2} (re-

spectively, Ay = {f1 × {y} : f1 ∈ A1}) is isomorphic to A2 (respectively, A1). So,

β[±1](Ax) ≥ β[±1](A2) and β[±1](Ay) ≥ β[±1](A1). This establishes the above theorem.

2

6.2.2 Square products

In the case when Φ is the Square product 2, the product set A is defined as follows.

A = A12A2 = {f1 × f2|f1 ∈ A1 and f2 ∈ A2}.

When both the families A1 and A2 consists of even subsets of [n1] and [n2], re-

spectively, obtaining a small sized bisecting family for A12A2 is easy, as given by the

following theorem.

Theorem 6.12 Let A1 and A2 be families consisting of even sized subsets of [n1] and
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[n2], respectively. Then,

β[±1](A12A2) = min(β[±1](A1), β[±1](A2)).

Proof. Without loss of generality, let t = β[±1](A1) ≤ β[±1](A2). LetB1 = {B11, . . . , B1t}

be an optimal bisecting family forA1 and let B2 = {B21, . . . , B2r} be an optimal bisect-

ing family for A2, where t, r ∈ N. A bisecting family B = {B1, . . . , Bt} of cardinality

t for A can be constructed as follows. For any point (x, y) ∈ X , where x ∈ [n1] and

y ∈ [n2], add (x, y) to Bj if either x ∈ B1j and y 6∈ B2j or x 6∈ B1j and y ∈ B2j . Bj

is considered empty for r < j ≤ t. We claim that B is indeed a bisecting family for A.

Observe that for any f1 × f2 where f1 ∈ A1 and f2 ∈ A2}, f1 × f2 is bisected by Bi if

f1 is bisected by B1i. 2

Example 6.13 In Example 6.10, choosing the same values for n1, n2, A1, A2, B1, and

B2, it follows thatA = A12A2 = {{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7)}, {(1, 7), (1,

8), (2, 7), (2, 8)}, {(1, 5), (1, 6), (1, 7), (3, 5), (3, 6), (3, 7)}, {(1, 7), (1, 8), (3, 7), (3, 8)},

{(3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7)}, {(3, 7), (3, 8), (4, 7), (4, 8)}}. Then, B = {{(2,

7), (3, 7), (1, 5), (4, 5), (1, 6), (4, 6), (1, 8), (4, 8)}} is a bisecting family for A.

However, this construction does not work when at least one of A1 and A2 includes

odd subsets. If at least one of A1 and A2 is a family of only even subsets, the construc-

tion given in the proof of Theorem 6.12 yields the following bound.

Theorem 6.14 LetA1 andA2 be families consisting of subsets of [n1] and [n2], respec-

tively. Moreover, let each element of the familyA1 be even sized. Then, β[±1](A12A2) ≤

β[±1](A1).

Proof. Let t = β[±1](A1). Let B1 = {B11, . . . , B1t} be an optimal bisecting family for

A1. Consider the family B = {B1× [n2], . . . , Bt× [n2]}. We claim that B is a bisecting

family for A = A12A2. Note that for any f1 ∈ A1 and f2 ∈ A2, f1 is bisected by
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some B1j ∈ B1, 1 ≤ j ≤ t. So, the set f1 × f2 must also get bisected by F ′j × [n2].

However, this construction does not work when both A1 and A2 includes odd subsets,

as demonstrated in the following example.

Example 6.15 Let n1 = {1, 2, 3, 4, 5}, n2 = {6, 7, 8, 9, 10, 11, 12, 13}. Let A1 =

{{1, 2, 3, 4, 5}}. LetA2 = {{6, 7, 8}, {9, 10, 11, 12, 13}, . . .} such thatB2 = {{6}, {9, 10}}

is an optimal bisecting family for A2. Then, B1 = {1, 2, 3} bisects A1, and B2 =

{{6}, {9, 10}} bisectsA2. LetB = {{{1, 2, 3}×{9, 10, 11, 12, 13}∪{4, 5}×{6, 7, 8}}, {[n1]×

{9, 10}}}. The hyperedge {{1, 2, 3, 4, 5} × {9, 10, 11, 12, 13}} is not bisected by B.

In this case, it is not hard to prove that β[±1](A12A2) ≤ β[±1](A1) · β[±1](A2), but

this upper bound may not be tight.

6.2.3 Strong products

In the case when Φ is the Strong product �, the product set A is defined as follows.

A = {A1 ×A2} ∪ {A12A2}.

We have the following result that follows from the discussion above.

1. Both A1 and A2 consists of even subsets: From Theorems 6.11 and 6.12, it fol-

lows that β[±1](A1�A2) = max(β[±1](A1), β[±1](A2)).

2. At least one of A1 and A2 is a family of only even subsets: From Theorems 6.11

and 6.14, it follows that β[±1](A1�A2) ≤ 2 max(β[±1](A1), β[±1](A2)).
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Chapter 7

Conclusion

In this thesis we have proposed and studied a few extremal two-family problems where

we are given one family of sets and are required to optimize the cardinality of another

family, satisfying certain constraints with respect to the given family. In the process of

studying the cardinalities of such extremal families, we established exact solutions in a

few cases and asymptotically tight bounds in some cases. The first three problems are

motivated from applications in product testing, especially testing of drugs, whereas the

last problem has motivation from a purely combinatorial problem of L-intersecting fam-

ilies. In each of these problems, some questions remain open for further investigation

as listed below. We believe some of these open problems are hard while a few others

seem more tractable - solutions for these problems may provide new insights regarding

the harder open problems.

In Section 3.1.3, we have seen that βD(n, k) is not monotone with k in general.

However, it is possible that βD(n, k) is monotone with k in certain ranges, say when

k ≤ n
2 . In Section 3.3.2, we established the lower bound of n−i+1

2 for βi(n). However,

the best upper bound we have for this case is just n−i+1. So, there is a gap between the

lower and upper bounds for βi(n). These two questions seem tractable for the problem

of bisecting families; however, the following question of inapproximability of βD(E)

for an n-vertex k-uniform hypergraph G(V,E) seems harder. From the discussions

in Chapter 3, it follows that β[±(k−1)](E) is dlogχ(G)e for any k-uniform hypergraph
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G(V,E). We know that for any fixed k, it is impossible to approximate the chromatic

number of k-uniform hypergraphs on n vertices within a factor of n1−ε for any fixed

ε > 0, unless NP ⊆ ZPP (see Krivelevich and Sudakov [41], Feige and Killian

[27]). Therefore, under the assumption NP 6⊆ ZPP , no polynomial time algorithm

can approximate β[±(k−1)](E) for an n-vertex k-uniform hypergraph G(V,E) within an

additive approximation factor of (1− ε) log n− 1, for any fixed ε > 0 and for any fixed

k. However, we believe that approximating βD(E) is significantly harder. It seems

plausible that approximating βD(E) for an n-vertex k-uniform hypergraph within an

additive factor of δn is NP hard, for any fixed ε > 0, for some fixed δ > 0 and for any

fixed k.

We note that if d = O(1), then Theorem 4.4 asserts that βd(n) = θ(n2). However,

the corresponding coefficients are not the same: the lower bound has the coefficient 2
d2

whereas the upper bound has the coefficient 2
(d−1)2 . It would be interesting to determine

the exact coefficient in this case. Moreover, when d is even and d ∈ Ω(n0.5+ε), for any

0 < ε ≤ 0.5, we have an upper bound of O(n) on βd(n); the lower bound for this case

is o(n). We believe that βd(n) is more close to the upper bound. Though the linear

algebraic techniques does not seem to yield tight lower bounds, it may be possible to

obtain better lower bounds with some combinatorial arguments.

The constructions establishing tight upper bounds for γ(n, [1, n2 ], [2, n]) in Theo-

rem 5.1 involve two sized sets in the SUR. We note that two sized sets are indispens-

able in this case due to the presence of bicolorings consisting of exactly one +1 and

n − 1 -1’s. However, if the underlying set of bicolorings does not include such bi-

ased bicolorings (i.e. say γ(n, [t, n2 ], [2, n]) for some 1 < t ≤ n
2 ), it is possible to ob-

tain SUR’s avoiding two sized sets. Study of γ(n, [t, n2 ], [2, n]) for any 1 < t ≤ n
2

remains open. The restricted SUR problem, where each bicoloring is restricted to

have exactly k +1’s and each set in the SUR is required to be of cardinality exactly

r, can be modelled as a covering problem that enabled us to establish (nk)
( rr

2
)(n−rk− r2

) ≤

γ(n, k, r) ≤ (nk)
( rr

2
)(n−rk− r2

)

(
1 + 0.7r + ln(

(
n−r
k− r2

)
)
)
. In Theorem 5.3, under even tighter
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conditions (i.e., k ≤ log4 log4(n0.5−ε) and r = 2k), we establish asymptotically tight

bounds for γ(n, k, 2k) using the ‘Rödl nibble method’. It seems plausible that a more

prudent selection of nibbles may improve the upper bounds for γ(n, k, r) under slightly

relaxed conditions. In Section 5.4, we establish that no deterministic polynomial time

algorithm can approximate the system of unbiased representative problem for a family

of bicolorings on [n] to within a factor (1 − Ω(1)) lnn
2.34r of the optimal when each set

chosen in the representative family is required to have its cardinality at most r, unless

P=NP. Improving this hardness of approximation of the system of unbiased representa-

tive problem for a family of bicolorings on [n] remains open.

Bisection closed families are a natural generalization of the notion of bisection. In

Theorem 6.3, we show that ϑ(n) is at most O(n log2 n
log logn). However, we suspect that the

actual value of ϑ(n) is more close to O(n). We have two examples of such families of

cardinality 3n
2 − 2. In special cases when a bisection closed family is restricted to (i)

sets of cardinality more than n
2 or (ii) sets of cardinality n

2 ±
√
n

2δ , we establish that the

cardinality of the bisection closed family is O(n). The techniques used in the special

cases does not directly extend to the general case. We believe that the lower bound is

more close to the actual value of ϑ(n) and improving the general upper bound for ϑ(n)

is open.
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