Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs

Tapas Kumar Mishra
Instructor: Prof. Sudebkumar Prasant Pal
Indian Institute of Technology, Kharagpur

November 16, 2012

Ramsey Number $R(a, b)$

$R(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic K_{a} or a monochromatic K_{b}.

$$
\begin{gathered}
R(1,1)=1, R(1, b)=1 \\
R(2,2)=2, R(2, b)=b \\
R(3,3)=6 R(4,4)=18 R(4,5)=25
\end{gathered}
$$

Ramsey Number $R(a, b)$

$R(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic K_{a} or a monochromatic K_{b}.

$$
\begin{gathered}
R(1,1)=1, R(1, b)=1 \\
R(2,2)=2, R(2, b)=b \\
R(3,3)=6 R(4,4)=18 R(4,5)=25
\end{gathered}
$$

$$
\begin{aligned}
R(6,6) & =102-165 \\
R(10,10) & =798-23556
\end{aligned}
$$

Ramsey Number $R(a, b)$

$R(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic K_{a} or a monochromatic K_{b}.

Traditional Ramsey searches for complete structures (like K_{a} or K_{b}), but what happens if we try to find complete bipartite structures? Solving this basic question is the area of my research.

Definition of $R^{\prime}(a, b)$

$R^{\prime}(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$.

In other words, $R^{\prime}(a, b)$ is the minimum number n so that any n-vertex simple undirected graph G or its complement G^{\prime} must contain the complete bipartite graph $K_{a, b}$.
$R^{\prime}(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$.
$R^{\prime}(1,1)=$?
any bicoloring of the edges of the $R^{\prime}(1,1)$-vertex complete undirected graph would contain a monochromatic $K_{1,1}$.

Figure 1: monochromatic $K_{1,1}$ in bicoloring using red and blue.
$R^{\prime}(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$.
$R^{\prime}(1,1)=$?
any bicoloring of the edges of the $R^{\prime}(1,1)$-vertex complete undirected graph would contain a monochromatic $K_{1,1}$.

Figure 1: monochromatic $K_{1,1}$ in bicoloring using red and blue.

$R^{\prime}(1,1)=2$

$R^{\prime}(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$.
$R^{\prime}(1,2)=$?
any bicoloring of the edges of the $R^{\prime}(1,2)$-vertex complete undirected graph would contain a monochromatic $K_{1,2}$.

Figure 2: monochromatic $K_{1,2}$ in bicoloring using red and blue.
$R^{\prime}(a, b)$ is the minimum number n such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$.
$R^{\prime}(1,2)=$?
any bicoloring of the edges of the $R^{\prime}(1,2)$-vertex complete undirected graph would contain a monochromatic $K_{1,2}$.

Figure 2: monochromatic $K_{1,2}$ in bicoloring using red and blue.

$R^{\prime}(1,2)=3$

Figure 3: $K_{2,2}$ free graphs with $n=4$ and $n=5$ vertices.
$R^{\prime}(1,3) \geq 6$, observe that we need at least 4 vertices and neither a 4-cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5-cycle in K_{5}, nor its complement (also a 5-cycle) has a $K_{1,3}$.

- Non-constructive

Figure 3: $K_{2,2}$ free graphs with $n=4$ and $n=5$ vertices.
$R^{\prime}(1,3) \geq 6$, observe that we need at least 4 vertices and neither a 4-cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5-cycle in K_{5}, nor its complement (also a 5-cycle) has a $K_{1,3}$.

- Non-constructive
- Monotonically increasing

Figure 3: $K_{2,2}$ free graphs with $n=4$ and $n=5$ vertices.
$R^{\prime}(1,3) \geq 6$, observe that we need at least 4 vertices and neither a 4-cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5-cycle in K_{5}, nor its complement (also a 5-cycle) has a $K_{1,3}$.

- Non-constructive
- Monotonically increasing
- Grows exponentially

Figure 3: $K_{2,2}$ free graphs with $n=4$ and $n=5$ vertices.
$R^{\prime}(1,3) \geq 6$, observe that we need at least 4 vertices and neither a 4-cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5-cycle in K_{5}, nor its complement (also a 5-cycle) has a $K_{1,3}$.

- Non-constructive
- Monotonically increasing
- Grows exponentially

Figure 3: $K_{2,2}$ free graphs with $n=4$ and $n=5$ vertices.
$R^{\prime}(1,3) \geq 6$, observe that we need at least 4 vertices and neither a 4-cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5-cycle in K_{5}, nor its complement (also a 5-cycle) has a $K_{1,3}$.

- Non-constructive
- Monotonically increasing
- Grows exponentially

$$
\begin{aligned}
& R^{\prime}(7,7) \leq 125500 \\
& R^{\prime}(8,8) \leq 7456621
\end{aligned}
$$

Results

(1) $R^{\prime}(1, b)=2 b$, if b is odd.
$R^{\prime}(1, b)=2 b-1$, if b is even.
(2) $R^{\prime}(2, b)>2 b+1$, for all integers $b \geq 2$.
(3) $R^{\prime}(a, b)>\frac{(2 \pi)^{\left(\frac{1}{a+b}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} * 2^{\left(\frac{a b-1}{a+b}\right)}$
(9. If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
(9) For all $n \in N$ and $0<p<1$, if
$\binom{n}{a}\binom{n-a}{b} p^{a b}+\binom{n}{c}\binom{n-c}{d}(1-p)^{c d}<1$, then $R^{\prime}(a, b, c, d)>n$.

Results Continued..

(0) $R^{\prime}(p, q) \leq R(p+q, p+q)$.
(1) $R^{\prime}(a, b) \leq 2^{a} * R^{\prime}(a-1, b), a<b$.
(8) if $\frac{n(n-1)}{2} \geq 2 * \frac{a}{2} * \sqrt[a]{\frac{b-1}{a!}} * n^{2-\frac{1}{a}}+1, R^{\prime}(a, b)<n$.
(9) $R^{\prime}(a, b, c)>$
$\frac{\left.(2 \pi)^{\left(\frac{3}{2(a+b+c)}\right)}\right)_{* a}\left(\frac{a+\frac{1}{2}}{a+b+c}\right)_{* b}\left(\frac{b+\frac{1}{2}}{a+b+c}\right)_{* c}\left(\frac{c+\frac{1}{2}}{a+b+c}\right)}{e} * 2^{\left(\frac{a b c-1}{a+b+c}\right)}$.
(10) If $e * 2^{1-a b c} *\left(a b c\binom{n-3}{a+b+c-3}\binom{a+b+c-3}{b-1}\binom{a+c-2}{c-1}+1\right) \leq 1$, $R^{\prime}(a, b, c)>n$.
(1) (Conjecture) $R^{\prime}(1,1, b)=b+2$.

Theorem

$2 b-1 \leq R^{\prime}(1, b) \leq 2 b$.
$R^{\prime}(1, b) \leq 2 b: n=2 b$ vertices:
for any vertex x, there are exactly $2 b-1$ possible neighbours, so by pigeon hole principle, x must contain b neighbours in atleast one of G or G^{\prime}.
Those b neighbours combined with x forms the $K_{1, b}$.

$2 b-1$ possible neighbours

$2 b-1 \leq R^{\prime}(1, b) \leq 2 b$.

$R^{\prime}(1, b) \geq 2 b-1: n=2 b-2($ i.e $<2 b-1)$ vertices:
To show that $R^{\prime}(1, b) \geq 2 b-1$, we need to give a general construction with $2 b-2$ vertices graphs G and G^{\prime} free from $K_{1, b}$. So our construction would generate a graph G that is $(b-1)$-regular(that will be obviously free from $K_{1, b}$), such that the number of possible neighbours for any vertex in G^{\prime} cannot exceed $b-1$.

$2 b-1 \leq R^{\prime}(1, b) \leq 2 b$.

$R^{\prime}(1, b) \geq 2 b-1: n=2 b-2($ i.e $<2 b-1)$ vertices:
To show that $R^{\prime}(1, b) \geq 2 b-1$, we need to give a general construction with $2 b-2$ vertices graphs G and G^{\prime} free from $K_{1, b}$. So our construction would generate a graph G that is $(b-1)$-regular(that will be obviously free from $K_{1, b}$), such that the number of possible neighbours for any vertex in G^{\prime} cannot exceed $b-1$.
Construction of G :If $b-1=2 m$ is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side.

Figure 4: $\quad b-1(=2 m)$ is even, $m=2$ in here

$R^{\prime}(1, b) \geq 2 b-1$

Construction of G :If $b-1=2 m$ is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side. If $b-1=2 m+1$ is odd (and as $n=2 b-2$ is even), put the vertices on a circle, join each to its m nearest neighbors on each side, and also to the vertex directly opposite.

Figure 5: $b-1(=2 m+1)$ is odd, $m=2$ here

$R^{\prime}(1, b) \geq 2 b-1$

Construction of G :If $b-1=2 m$ is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side. If $b-1=2 m+1$ is odd (and as $n=2 b-2$ is even), put the vertices on a circle, join each to its m nearest neighbors on each side, and also to the vertex directly opposite.

Figure 5: $b-1(=2 m+1)$ is odd, $m=2$ here
This will result in a $(b-1)$-regular graph G such that G and its complement G^{\prime} are free from $K_{1, b}$.

$$
\begin{aligned}
& \text { Theorem } \\
& R^{\prime}(1, b)=2 b \text {, if } b \text { is odd. } \\
& R^{\prime}(1, b)=2 b-1 \text {, if } b \text { is even. }
\end{aligned}
$$

$$
R^{\prime}(2,2)>5
$$

Figure 6: G and G^{\prime} with $n=4$ and $n=5$ free from a $K_{2,2}$
$R^{\prime}(2,2)=6$.

$$
R^{\prime}(2,3)>7
$$

Figure 7: G and G^{\prime} with $n=7$ without a $K_{2,3}$

Theorem

$R^{\prime}(2, b)>2 b+1$, for all integers $b \geq 2$.

Figure 8 : Construction of G (left two): generation of B_{1}, B_{2} and addition of edges. Resulting G^{\prime} (rightmost): In G^{\prime}, B_{1} and B_{2} become K_{b}, and only edges between B_{1} and B_{2} is a matching.

Theorem
 $$
R^{\prime}(3,3)>11
$$

Figure 9: G and G^{\prime} with $n=11$ without a $K_{3,3}$

Probabilistic lower bounds for $R^{\prime}(a, b)$

we want some (ideally as large as possible) n so that we can somehow colour the edges of K_{n} using two colors (say red and blue) in such a way that we get neither a red K_{a} or a blue K_{b}.

non-constructive, but shows such examples exist!

Earlier works..

The best known lower bound on $R^{\prime}(a, b)$ due to Chung and Graham [4] is

$$
\begin{equation*}
R^{\prime}(a, b)>(2 \pi \sqrt{a b})^{\left(\frac{1}{a+b}\right)} *\left(\frac{a+b}{e^{2}}\right) * 2^{\frac{a b-1}{a+b}} \tag{1}
\end{equation*}
$$

Probablistic Lower Bound

Theorem

$R^{\prime}(a, b)>\frac{(2 \pi)^{\left(\frac{1}{a+b}\right)} * a\left(\frac{a+\frac{1}{2}}{a+b}\right)}{a^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}} \underset{e}{e} * 2^{\left(\frac{a b-1}{a+b}\right)}$
Proof: Let n be the number of vertices of graph G. Then the total number of distinct $K_{a, b}$ possible is

$$
\binom{n}{a} *\binom{n-a}{b}
$$

Probablistic Lower Bound

Theorem

$$
R^{\prime}(a, b)>\frac{(2 \pi)\left(\frac{1}{a+b}\right) * a\left(\frac{a+\frac{1}{2}}{a+b}\right)}{e} \frac{\left(\frac{b+\frac{1}{2}}{a+b}\right)}{e} * 2^{\left(\frac{a b-1}{a+b}\right)}
$$

Proof: Let n be the number of vertices of graph G. Then the total number of distinct $K_{a, b}$ possible is

$$
\binom{n}{a} *\binom{n-a}{b}
$$

Each $K_{a, b}$ has exactly $a b$ edges. Each edge can be either of color 1 or color 2 with equal probability. So probability of a particular $K_{a, b}$ of color 1 is $\left(\frac{1}{2}\right)^{a b}$. So probability that a particular $K_{a, b}$ of either color 1 or color 2 exists is

Probablistic Lower Bound

So probalility p of any monochromatic $K_{a, b}=$

$$
\begin{equation*}
\binom{n}{a} *\binom{n-a}{b} * 2^{1-a b} \tag{3}
\end{equation*}
$$

Our objective is to choose as large n as possible with $p<1$. So choosing
$\left.n=\frac{2 \pi\left(\frac{1}{a+b}\right)}{* a\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}\right) * 2^{\left(\frac{a b-1}{a+b}\right)}$, we get $p<1$.

Probablistic Lower Bound

So probalility p of any monochromatic $K_{a, b}=$

$$
\begin{equation*}
\binom{n}{a} *\binom{n-a}{b} * 2^{1-a b} \tag{3}
\end{equation*}
$$

Our objective is to choose as large n as possible with $p<1$. So choosing
$n=\frac{2 \pi^{\left(\frac{1}{a+b}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} * 2^{\left(\frac{a b-1}{a+b}\right)}$, we get $p<1$.
This guarantees the existence of an n-vertex graph for which some edge bicoloring would not result in any monochromatic $K_{a, b}$.

A lower bound for $R^{\prime}(a, b)$ using Lovász' local lemma

Objective: existence of a monochromatic $K_{\mathrm{a}, \mathrm{b}}$ in any bicoloring of the edges of K_{n}.
Since the same edge may be present in many distinct $K_{a, b}$'s, the colouring of any particular edge may effect the monochromaticity in many $K_{a, b}$'s. This gives the motivation of use of Lovász' local lemma (see [9]) in this context.

Theorem (Lovász' local lemma Corrolary)

If every event $E_{i}, 1 \leq i \leq m$ is dependent on at most d other events and $\operatorname{Pr}\left[E_{i}\right] \leq p$, and if ep $(d+1) \leq 1$, then $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]>0$.

Improved bound using LLL

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
Proof: Let S be the set of edges of an arbitrary $K_{a, b}$, and let E_{S} be the event that all edges in this $K_{a, b}$ are coloured monochromatically.

Improved bound using LLL

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
Proof: Let S be the set of edges of an arbitrary $K_{a, b}$, and let E_{S} be the event that all edges in this $K_{a, b}$ are coloured monochromatically. For each such S, the probability of E_{S} is $P\left(E_{S}\right)=2^{1-a b}$.

Improved bound using LLL

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
Proof: Let S be the set of edges of an arbitrary $K_{a, b}$, and let E_{S} be the event that all edges in this $K_{a, b}$ are coloured monochromatically. For each such S, the probability of E_{S} is $P\left(E_{S}\right)=2^{1-a b}$.
We enumerate the sets of edges of all possible $K_{a, b}$'s as $S_{1}, S_{2}, \ldots, S_{m}$, where $m=\binom{n}{a}\binom{n-a}{b}$.

Improved bound using LLL

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
Proof: Let S be the set of edges of an arbitrary $K_{a, b}$, and let E_{S} be the event that all edges in this $K_{a, b}$ are coloured monochromatically. For each such S, the probability of E_{S} is $P\left(E_{S}\right)=2^{1-a b}$.
We enumerate the sets of edges of all possible $K_{a, b}$'s as $S_{1}, S_{2}, \ldots, S_{m}$, where $m=\binom{n}{a}\binom{n-a}{b}$.
Each event $E_{S_{i}}$ is mutually independent of all the events $E_{S_{j}}$ from the set

$$
\begin{equation*}
\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right|=0\right\} \tag{4}
\end{equation*}
$$

since for any such S_{j}, S_{i} and S_{j} share no edges.

Improved bound using LLL Cont..

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
For each $E_{S_{i}}$, the number of events outside this set satisfies the inequality $\left|\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right| \geq 1\right\}\right| \leq a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$
as every S_{j} in this set shares at least one edge with S_{i}, and therefore such an S_{j} shares at least two vertices with S_{i}.

Improved bound using LLL Cont..

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
For each $E_{S_{i}}$, the number of events outside this set satisfies the inequality $\left|\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right| \geq 1\right\}\right| \leq a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$
as every S_{j} in this set shares at least one edge with S_{i}, and therefore such an S_{j} shares at least two vertices with S_{i}.
We can choose the rest of the $a+b-2$ vertices of S_{j} from the remaining $n-2$ vertices of K_{n}, out of which we can choose $b-1$ for one partite of S_{j}, and the remaining $a-1$ to form the second partite of S_{j}, yielding a $K_{a, b}$ that shares at least one edge with S_{i}.

Improved bound using LLL Cont..

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
For each $E_{S_{i}}$, the number of events outside this set satisfies the inequality $\left|\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right| \geq 1\right\}\right| \leq a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$
as every S_{j} in this set shares at least one edge with S_{i}, and therefore such an S_{j} shares at least two vertices with S_{i}.
We can choose the rest of the $a+b-2$ vertices of S_{j} from the remaining $n-2$ vertices of K_{n}, out of which we can choose $b-1$ for one partite of S_{j}, and the remaining $a-1$ to form the second partite of S_{j}, yielding a $K_{a, b}$ that shares at least one edge with S_{i}.
We apply Corollary 6 to the set of events $E_{S_{1}}, E_{S_{2}}, \ldots, E_{S_{m}}$, with

$$
\begin{equation*}
p=2^{1-a b}, d=a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}, \tag{5}
\end{equation*}
$$

Improved bound using LLL Cont..

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
We apply Corollary 6 to the set of events $E_{S_{1}}, E_{S_{2}}, \ldots, E_{S_{m}}$, with $p=2^{1-a b}, d=a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$,

$$
\begin{equation*}
e * 2^{1-a b} *\left(a b\binom{n}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1=>\operatorname{Pr}\left[\bigcap_{i=1}^{m} \bar{E}_{S_{i}}\right]>0 \tag{6}
\end{equation*}
$$

Improved bound using LLL Cont..

Theorem

If $e * 2^{1-a b} *\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R^{\prime}(a, b)>n$
We apply Corollary 6 to the set of events $E_{S_{1}}, E_{S_{2}}, \ldots, E_{S_{m}}$, with $p=2^{1-a b}, d=a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$,

$$
\begin{equation*}
e * 2^{1-a b} *\left(a b\binom{n}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1=>\operatorname{Pr}\left[\bigcap_{i=1}^{m} \bar{E}_{S_{i}}\right]>0 \tag{6}
\end{equation*}
$$

This non-zero probability (of none of the events $E_{S_{i}}$ occuring, for $1 \leq i \leq m$) implies the existence of some bicolouring of the edges of K_{n} with no monochromatic $K_{a, b}$, thereby establishing the theorem.

Table 1: Lower bounds for $R^{\prime}(a, b)$ from Inequality 1(left), Theorem 5 (middle) and Theorem 7 (right)

b	3	4	5	6	7	8	14	15	16
a									
1	$2,3,3$	$2,3,4$	$3,4,5$	$3,5,6$	$3,5,7$	$3,6,8$	$5,10,17$	$5,11,18$	$6,12,19$
2	$3,4,4$	$3,5,6$	$4,6,7$	$5,7,9$	$5,8,10$	$6,9,12$	$9,17,23$	$10,18,24$	$10,19,26$
3	$4,5,6$	$5,7,8$	$6,8,9$	$7,10,12$	$8,12,14$	$9,14,16$	$16,26,32$	$17,29,35$	$18,31,37$
4		$6,9,10$	$8,11,12$	$10,14,15$	$12,16,18$	$14,19,22$	$26,41,46$	$28,45,50$	$30,49,55$
5			$11,14,16$	$13,18,20$	$16,22,24$	$19,27,29$	$40,60,65$	$43,67,72$	$47,74,80$
6				$17,23,25$	$21,29,31$	$26,35,38$	$59,87,93$	$66,98,104$	$72,109,116$
7					$27,37,39$	$34,46,48$	$86,123,129$	$96,139,147$	$106,156,165$
8						$43,58,61$	$119,168,178$	$136,193,204$	$152,219,232$
14							$556,755,820$	$678,922,1005$	$817,1113,1219$
15								$836,1136,1246$	$1019,1385,1525$
16									$1254,1704,1886$

Off-diagonal Ramsey-like numbers for complete bipartite subgraphs

$R^{\prime}(a, b, c, d)$ as the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain the complete bipartite graph $K_{c, d}$.

Off-diagonal Ramsey-like numbers for complete bipartite subgraphs

$R^{\prime}(a, b, c, d)$ as the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain the complete bipartite graph $K_{c, d}$.

Theorem

For all $n \in N$ and $0<p<1$, if

$$
\begin{equation*}
\binom{n}{a}\binom{n-a}{b} p^{a b}+\binom{n}{c}\binom{n-c}{d}(1-p)^{c d}<1 \tag{7}
\end{equation*}
$$

na, then $R^{\prime}(a, b, c, d)>n$.

Existence of $R^{\prime}(a, b)$

Existance proof is achieved by proving following explicit bound.

Theorem

$R^{\prime}(p, q) \leq R(p+q, p+q)$.
Proof: From Ramsey theorem we know that for any positive integers p and $q, R(p, q)$ always exist.

Existence of $R^{\prime}(a, b)$

Existance proof is achieved by proving following explicit bound.

Theorem

$R^{\prime}(p, q) \leq R(p+q, p+q)$.
Proof: From Ramsey theorem we know that for any positive integers p and $q, R(p, q)$ always exist. Hence $R(p+q, p+q)$ also exists. $R(p+q, p+q)$ is the minimum number such that any bicoloring of the graph with this number of vertices always contain a monochromatic K_{p+q}.

Existence of $R^{\prime}(a, b)$

Existance proof is achieved by proving following explicit bound.

Theorem

$R^{\prime}(p, q) \leq R(p+q, p+q)$.
Proof: From Ramsey theorem we know that for any positive integers p and $q, R(p, q)$ always exist. Hence $R(p+q, p+q)$ also exists. $R(p+q, p+q)$ is the minimum number such that any bicoloring of the graph with this number of vertices always contain a monochromatic K_{p+q}.
As K_{p+q} always contains a subgraph $K_{p, q}$, hence the number that guarantees a monochomatic K_{p+q} always guarantees a monochomatic $K_{p, q}$.

Upper Bounds on of $R^{\prime}(a, b)$

Theorem

$R^{\prime}(a, b) \leq 2^{a} * R^{\prime}(a-1, b), a<b$.

Theorem

$$
\text { if } \frac{n(n-1)}{2} \geq 2 * \frac{a}{2} * \sqrt[a]{\frac{b-1}{a!}} * n^{2-\frac{1}{a}}+1, R^{\prime}(a, b)<n
$$

Table 2: Upper bounds on $R^{\prime}(a, b)$ from Theorem 13

\boldsymbol{c}	1	2	3	4	5	6	7	8
a								
1	2	4	6	8	10	12	14	16
2		11	19	27	35	43	51	59
3			75	111	147	183	219	255
4				516	687	858	1028	1199
5					3339	4172	5005	5839
6						20742	24890	29037
7							125500	146415
8								7456621

Lower bounds for Ramsey like numbers for complete tripartite 3-uniform subgraphs

- An r-uniform hypergraph is a hypergraph where every hyperedge has exactly r vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)

Lower bounds for Ramsey like numbers for complete tripartite 3-uniform subgraphs

- An r-uniform hypergraph is a hypergraph where every hyperedge has exactly r vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)
- $R^{\prime}(a, b, c)$ is the minimum number n such that any n-vertex 3 -uniform hypergraph $G(V, E)$, or its complement $G^{\prime}(V, E)$ contains a $K_{a, b, c}$.

Lower bounds for Ramsey like numbers for complete tripartite 3-uniform subgraphs

- An r-uniform hypergraph is a hypergraph where every hyperedge has exactly r vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)
- $R^{\prime}(a, b, c)$ is the minimum number n such that any n-vertex 3 -uniform hypergraph $G(V, E)$, or its complement $G^{\prime}(V, E)$ contains a $K_{a, b, c}$.
- $K_{a, b, c}$ is defined as the complete tripartite 3-uniform hypergraph with vertex set $A \cup B \cup C$, where the A, B and C have a, b and c vertices respectively, and $K_{a, b, c}$ has abc 3-uniform hyperedges $\{u, v, w\}$, $u \in A, v \in B$ and $w \in C$.

Lower bounds for Ramsey like numbers for complete tripartite 3-uniform subgraphs

$R^{\prime}(1,1,1)=3 ;$

Lower bounds for Ramsey like numbers for complete tripartite 3-uniform subgraphs

$R^{\prime}(1,1,1)=3$; with 3 vertices, there is one possible 3-uniform hyperedge which either is present or absent in G.

$$
\begin{aligned}
& R^{\prime}(1,1,2)=4 \\
& R^{\prime}(1,1,3)=5 \\
& R^{\prime}(1,1,4)=6
\end{aligned}
$$

Conjecture.

$R^{\prime}(1,1, b)=b+2$.

Probabilistic lower bound for $R^{\prime}(a, b, c)$

Theorem

$$
\begin{equation*}
R^{\prime}(a, b, c)>\frac{(2 \pi)\left(\frac{3}{2(a+b+c)}\right) * a\left(\frac{a+\frac{1}{2}}{a+b+c}\right) * b\left(\frac{b+\frac{1}{2}}{a+b+c}\right) * c\left(\frac{c+\frac{1}{2}}{a+b+c}\right)}{e} * 2\left(\frac{a b c-1}{a+b+c}\right) \tag{8}
\end{equation*}
$$

Theorem

If $e * 2^{1-a b c} *\left(a b c\binom{n-3}{a+b+c-3}\binom{a+b+c-3}{b-1}\binom{a+c-2}{c-1}+1\right) \leq 1, R^{\prime}(a, b, c)>n$

Table 3: Lower bounds for $R^{\prime}(a, b, c)$ by Inequality 14(left) and Theorem 15(right)

	$\mathrm{a}=2$	$\mathrm{a}=3$	$\mathrm{a}=3$	$a=3$	$a=4$	$a=4$	$a=5$	$\mathrm{a}=6$	$\mathrm{a}=6$	$a=6$	$a=6$
c	5	3	4	5	4	5	5	2	3	4	5
b											
2	9,13	8,11	11,16	16,22	18,25	26,36	40,58	11,16	21,29	36,52	59,87
3	16,22	14,19	23,32	35,50	41,61	68,107	124,208		50,74	107,175	209,371
4	26,36		41,61	68,107	84,138	159,281	334,653			277,521	643,1354
5	40,58			124,208		334,653	800,1765				1740,4194

Significance

- it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities a and b can be guaranteed to have the complete bipartite connectivity property.

Significance

- it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities a and b can be guaranteed to have the complete bipartite connectivity property.
- In the analysis of social networks it may be worthwhile knowing whether all persons in some subset of a persons share b friends.

Significance

- it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities a and b can be guaranteed to have the complete bipartite connectivity property.
- In the analysis of social networks it may be worthwhile knowing whether all persons in some subset of a persons share b friends.
- In the analysis of transaction systems where either there are many dependent transactions and we need to achieve consistency that either all transactions take place or none of them occur.

Conclusion

The reason behind such Ramsey-type results is that: "The largest partition class always contains the desired substructure".

- Whether $R^{\prime}(2, b)$ is equal to $4 b-2$.

Conclusion

The reason behind such Ramsey-type results is that: "The largest partition class always contains the desired substructure".

- Whether $R^{\prime}(2, b)$ is equal to $4 b-2$.
- Whether $R^{\prime}(3, b)$ is non exponential.

Conclusion

The reason behind such Ramsey-type results is that: "The largest partition class always contains the desired substructure".

- Whether $R^{\prime}(2, b)$ is equal to $4 b-2$.
- Whether $R^{\prime}(3, b)$ is non exponential.
- Constructive tighter lower bound for $R^{\prime}(a, b)$.

Conclusion

The reason behind such Ramsey-type results is that: "The largest partition class always contains the desired substructure".

- Whether $R^{\prime}(2, b)$ is equal to $4 b-2$.
- Whether $R^{\prime}(3, b)$ is non exponential.
- Constructive tighter lower bound for $R^{\prime}(a, b)$.
- Application of Lovász Local Lemma to Hypergraph Covering Problem.

References

[1] S. A. Burr, Diagonal Ramsey Numbers for Small Graphs, Journal of Graph Theory, 7 (1983) 57-69.
[2] S. A. Burr and J. A. Roberts, On Ramsey numbers for stars, Utilitas Mathematica, 4 (1973), 217-220.
[3] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers, Proceedings of the American Mathematical Society, 32 (1972) 389-394.
[4] Fan R. K. Chung and R. L. Graham, On Multicolor Ramsey Numbers for Complete Bipartite Graphs, Journal of Combinatorial Theory (B) 18, (1975) 164-169.
[5] P. Erdős and J. Spencer, "Paul Erdős : The Art of Counting", The MIT Press, (1973).
[6] G. Exoo, H. Harborth and I. Mengersen, On Ramsey Number of $K_{2, n}$, in Graph Theory, Combinatorics, Algorithms, and Applications (Y. Alavi, F.R.K. Chung, R.L. Graham and D.F. Hsueds.), SIAM Philadelphia, (1989) 207-211.
[7] F. Harary, Recent Results on Generalized Ramsey Theory for Graphs, in Graph Theory and Applications, (Y. Alavi et al. eds.) Springer, Berlin (1972) 125-138.
[8] R. Lortz and I. Mengersen, Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs, Results in Mathematics, 41 (2002) 140-149.
[9] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, (1995) 115-120.
[10] S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal on Combinatorics (2011).
[11] D. B. West, Introduction to Graph Theory, Second Edition, Pearson Prentice Hall, 2006.

