Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs

Tapas Kumar Mishra Instructor: Prof. Sudebkumar Prasant Pal

Indian Institute of Technology, Kharagpur

November 16, 2012

$$R(1,1) = 1, R(1,b) = 1$$

$$R(2,2) = 2, R(2,b) = b$$

$$R(3,3) = 6 R(4,4) = 18 R(4,5) = 25$$

$$R(1,1) = 1, R(1,b) = 1$$

$$R(2,2) = 2, R(2,b) = b$$

$$R(3,3) = 6 R(4,4) = 18 R(4,5) = 25$$

R(6,6) = 102 - 165R(10,10) = 798 - 23556

Traditional Ramsey searches for complete structures (like K_a or K_b), but what happens if we try to find complete bipartite structures? Solving this basic question is the area of my research.

In other words, R'(a, b) is the minimum number *n* so that any *n*-vertex simple undirected graph *G* or its complement *G'* must contain the complete bipartite graph $K_{a,b}$.

R'(1,1) =? any bicoloring of the edges of the R'(1,1)-vertex complete undirected graph would contain a monochromatic $K_{1,1}$.

Figure 1 : monochromatic $K_{1,1}$ in bicoloring using red and blue.

R'(1,1) =? any bicoloring of the edges of the R'(1,1)-vertex complete undirected graph would contain a monochromatic $K_{1,1}$.

Figure 1 : monochromatic $K_{1,1}$ in bicoloring using red and blue.

$$R'(1,1)=2$$

R'(1,2) = ?

any bicoloring of the edges of the R'(1,2)-vertex complete undirected graph would contain a monochromatic $K_{1,2}$.

Figure 2 : monochromatic $K_{1,2}$ in bicoloring using red and blue.

R'(1,2) = ?

any bicoloring of the edges of the R'(1,2)-vertex complete undirected graph would contain a monochromatic $K_{1,2}$.

Figure 2 : monochromatic $K_{1,2}$ in bicoloring using red and blue.

Figure 3 : $K_{2,2}$ free graphs with n = 4 and n = 5 vertices.

Non-constructive

Figure 3 : $K_{2,2}$ free graphs with n = 4 and n = 5 vertices.

- Non-constructive
- Monotonically increasing

Figure 3 : $K_{2,2}$ free graphs with n = 4 and n = 5 vertices.

- Non-constructive
- Monotonically increasing
- Grows exponentially

Figure 3 : $K_{2,2}$ free graphs with n = 4 and n = 5 vertices.

- Non-constructive
- Monotonically increasing
- Grows exponentially

Figure 3 : $K_{2,2}$ free graphs with n = 4 and n = 5 vertices.

- Non-constructive
- Monotonically increasing
- Grows exponentially

 $R'(7,7) \le 125500$ $R'(8,8) \le 7456621$

TK Mishra (IIT, Kharagpur)

- ∢ /⊐ >

Results

R'(1, b) = 2b, if b is odd.
 R'(1, b) = 2b - 1, if b is even.
 R'(2, b) > 2b + 1, for all integers
$$b \ge 2$$
.
 R'(a, b) > $\frac{(2\pi)^{\left(\frac{1}{a+b}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} * 2^{\left(\frac{ab-1}{a+b}\right)}$
 If $e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \le 1$, $R'(a, b) > n$
 For all $n \in N$ and $0 , if
 $\binom{n}{a} \binom{n-a}{b} p^{ab} + \binom{n}{c} \binom{n-c}{d} (1-p)^{cd} < 1$, then
 $R'(a, b, c, d) > n$.$

Results Continued..

R'(p,q) ≤ R(p + q, p + q).
 R'(a,b) ≤ 2^a * R'(a - 1,b), a < b.
 if
$$\frac{n(n-1)}{2} ≥ 2 * \frac{a}{2} * \sqrt[a]{\frac{b-1}{a!}} * n^{2-\frac{1}{a}} + 1, R'(a,b) < n.$$
 R'(a,b,c) >

$$\frac{(2\pi)^{\left(\frac{3}{2(a+b+c)}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b+c}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b+c}\right)} * c^{\left(\frac{c+\frac{1}{2}}{a+b+c}\right)} * 2^{\left(\frac{abc-1}{a+b+c}\right)}.
 If e * 2^{1-abc} * \left(abc \binom{n-3}{a+b+c-3} \binom{a+b+c-3}{b-1} \binom{a+c-2}{c-1} + 1\right) \le 1,
 R'(a,b,c) > n.
 (Conjecture) P'(1,1,b) = b + 2$$

(Conjecture)
$$R'(1, 1, b) = b + 2$$
.

Theorem

$2b-1 \leq R'(1,b) \leq 2b.$

 $R'(1,b) \leq 2b$: n = 2b vertices:

for any vertex x, there are exactly 2b-1 possible neighbours, so by pigeon hole principle, x must contain b neighbours in atleast one of G or G'. Those b neighbours combined with x forms the $K_{1,b}$.

$2b-1 \leq R'(1,b) \leq 2b.$

 $R'(1, b) \ge 2b - 1$: n = 2b - 2(i.e < 2b - 1) vertices:

To show that $R'(1, b) \ge 2b - 1$, we need to give a general construction with 2b - 2 vertices graphs G and G' free from $K_{1,b}$. So our construction would generate a graph G that is (b - 1)-regular(that will be obviously free from $K_{1,b}$), such that the number of possible neighbours for any vertex in G' cannot exceed b - 1.

$2b-1\leq R'(1,b)\leq 2b.$

TK Mishra (IIT, Kharagpur)

 $R'(1, b) \ge 2b - 1$: n = 2b - 2(i.e < 2b - 1) vertices:

To show that $R'(1, b) \ge 2b - 1$, we need to give a general construction with 2b - 2 vertices graphs G and G' free from $K_{1,b}$. So our construction would generate a graph G that is (b - 1)-regular(that will be obviously free from $K_{1,b}$), such that the number of possible neighbours for any vertex in G' cannot exceed b - 1.

Construction of G:If b - 1 = 2m is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side.

$R'(1,b) \geq 2b-1$

Construction of G:If b - 1 = 2m is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side. If b - 1 = 2m + 1 is odd (and as n = 2b - 2 is even), put the vertices on a circle, join each to its m nearest neighbors on each side, and also to the vertex directly opposite.

Figure 5 : b - 1(= 2m + 1) is odd, m = 2 here

$R'(1,b) \geq 2b-1$

Construction of G:If b - 1 = 2m is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side. If b - 1 = 2m + 1 is odd (and as n = 2b - 2 is even), put the vertices on a circle, join each to its m nearest neighbors on each side, and also to the vertex directly opposite.

Figure 5: b-1(=2m+1) is odd, m=2 here This will result in a (b-1)-regular graph G such that G and its complement G' are free from $K_{1,b}$.

Theorem

R'(1, b) = 2b, if b is odd. R'(1, b) = 2b - 1, if b is even.

Figure 6: G and G' with n = 4 and n = 5 free from a $K_{2,2}$

R'(2,2) = 6.

R'(2,3) > 7

Figure 7 : G and G' with n = 7 without a $K_{2,3}$

Theorem

R'(2, b) > 2b + 1, for all integers $b \ge 2$.

Figure 8 : Construction of G(left two): generation of B_1 , B_2 and addition of edges. Resulting G'(rightmost): In G', B_1 and B_2 become K_b , and only edges between B_1 and B_2 is a matching.

Theorem

R'(3,3) > 11.

Figure 9 : G and G' with n = 11 without a $K_{3,3}$

we want some (ideally as large as possible) n so that we can somehow colour the edges of K_n using two colors (say red and blue) in such a way that we get neither a red K_a or a blue K_b .

non-constructive, but shows such examples exist!

Earlier works ..

The best known lower bound on R'(a, b) due to Chung and Graham [4] is

$$R'(a,b) > \left(2\pi\sqrt{ab}\right)^{\left(\frac{1}{a+b}\right)} * \left(\frac{a+b}{e^2}\right) * 2^{\frac{ab-1}{a+b}}$$
(1)

Probablistic Lower Bound

Theorem

$$R'(a,b) > \frac{(2\pi)^{\left(\frac{1}{a+b}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} * 2^{\left(\frac{ab-1}{a+b}\right)}$$

Proof: Let *n* be the number of vertices of graph *G*. Then the total number of distinct $K_{a,b}$ possible is

$$\binom{n}{a} * \binom{n-a}{b}$$

Probablistic Lower Bound

Theorem

exists is

$$R'(a,b) > \frac{(2\pi)^{\left(\frac{1}{a+b}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} * 2^{\left(\frac{ab-1}{a+b}\right)}$$

Proof: Let *n* be the number of vertices of graph *G*. Then the total number of distinct $K_{a,b}$ possible is

$$\binom{n}{a} * \binom{n-a}{b}$$

Each $K_{a,b}$ has exactly *ab* edges. Each edge can be either of color 1 or color 2 with equal probability. So probability of a particular $K_{a,b}$ of color 1 is $\left(\frac{1}{2}\right)^{ab}$. So probability that a particular $K_{a,b}$ of either color 1 or color 2

 $2 \neq \left(\frac{1}{2}\right) = 2^{1-ab}$

 TK Mishra (IIT, Kharagpur)
 Ramsey Numbers for multipartite subgraphs

 November 16, 2012

So probalility p of any monochromatic $K_{a,b} =$

$$\binom{n}{a} * \binom{n-a}{b} * 2^{1-ab}$$
(3)

Our objective is to choose as large *n* as possible with p < 1. So choosing $n = \frac{2\pi \left(\frac{1}{a+b}\right) * a \left(\frac{a+\frac{1}{2}}{a+b}\right) * b \left(\frac{b+\frac{1}{2}}{a+b}\right)}{e} * 2 \left(\frac{ab-1}{a+b}\right), \text{ we get } p < 1.$

So probalility p of any monochromatic $K_{a,b} =$

$$\binom{n}{a} * \binom{n-a}{b} * 2^{1-ab}$$
(3)

Our objective is to choose as large *n* as possible with p < 1. So choosing $n = \frac{2\pi \left(\frac{1}{a+b}\right) * a \left(\frac{a+\frac{1}{2}}{a+b}\right) * b \left(\frac{b+\frac{1}{2}}{a+b}\right)}{e} * 2 \left(\frac{ab-1}{a+b}\right), \text{ we get } p < 1.$ This guarantees the existence of an *n*-vertex graph for which some edge bicoloring would not result in any monochromatic $K_{a,b}$.

A lower bound for R'(a, b) using Lovász' local lemma

Objective: existence of a monochromatic $K_{a,b}$ in any bicoloring of the edges of K_n .

Since the same edge may be present in many distinct $K_{a,b}$'s, the colouring of any particular edge may effect the monochromaticity in many $K_{a,b}$'s. This gives the motivation of use of Lovász' local lemma (see [9]) in this context.

Theorem (Lovász' local lemma Corrolary)

If every event E_i , $1 \le i \le m$ is dependent on at most d other events and $Pr[E_i] \le p$, and if $ep(d+1) \le 1$, then $Pr[\bigcap_{i=1}^n \overline{E_i}] > 0$.

Theorem

If
$$e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

Proof: Let S be the set of edges of an arbitrary $K_{a,b}$, and let E_S be the event that all edges in this $K_{a,b}$ are coloured monochromatically.

Theorem

If
$$e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

Proof: Let S be the set of edges of an arbitrary $K_{a,b}$, and let E_S be the event that all edges in this $K_{a,b}$ are coloured monochromatically. For each such S, the probability of E_S is $P(E_S) = 2^{1-ab}$.

Theorem

If
$$e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

Proof: Let S be the set of edges of an arbitrary $K_{a,b}$, and let E_S be the event that all edges in this $K_{a,b}$ are coloured monochromatically. For each such S, the probability of E_S is $P(E_S) = 2^{1-ab}$. We enumerate the sets of edges of all possible $K_{a,b}$'s as $S_1, S_2, ..., S_m$, where $m = {n \choose a} {n-a \choose b}$.

Theorem

If
$$e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

Proof: Let S be the set of edges of an arbitrary $K_{a,b}$, and let E_S be the event that all edges in this $K_{a,b}$ are coloured monochromatically. For each such S, the probability of E_S is $P(E_S) = 2^{1-ab}$. We enumerate the sets of edges of all possible $K_{a,b}$'s as $S_1, S_2, ..., S_m$, where $m = \binom{n}{a}\binom{n-a}{b}$. Each event E_{S_i} is mutually independent of all the events E_{S_i} from the set

$$\{E_{S_j} : |S_i \cap S_j| = 0\}$$
(4)

since for any such S_j , S_i and S_j share no edges.

Theorem

If
$$e * 2^{1-ab} * \left(ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

For each E_{S_i} , the number of events outside this set satisfies the inequality $|\{E_{S_j} : |S_i \cap S_j| \ge 1\}| \le ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1}$

as every S_j in this set shares at least one edge with S_i , and therefore such an S_j shares at least two vertices with S_i .

Theorem

If
$$e * 2^{1-ab} * \left(ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

For each E_{S_i} , the number of events outside this set satisfies the inequality $|\{E_{S_j} : |S_i \cap S_j| \ge 1\}| \le ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1}$ as every S_j in this set shares at least one edge with S_i , and therefore such an S_j shares at least two vertices with S_i . We can choose the rest of the a + b - 2 vertices of S_j from the remaining n-2 vertices of K_n , out of which we can choose b-1 for one partite of S_j , and the remaining a - 1 to form the second partite of S_j , yielding a $K_{a,b}$ that shares at least one edge with S_i .

Theorem

If
$$e * 2^{1-ab} * \left(ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \le 1$$
, $R'(a,b) > n$

For each E_{S_i} , the number of events outside this set satisfies the inequality $|\{E_{S_j} : |S_i \cap S_j| \ge 1\}| \le ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1}$

as every S_j in this set shares at least one edge with S_i , and therefore such an S_i shares at least two vertices with S_i .

We can choose the rest of the a + b - 2 vertices of S_j from the remaining n - 2 vertices of K_n , out of which we can choose b - 1 for one partite of S_j , and the remaining a - 1 to form the second partite of S_j , yielding a $K_{a,b}$ that shares at least one edge with S_i .

We apply Corollary 6 to the set of events $E_{S_1}, E_{S_2}, ..., E_{S_m}$, with

$$p = 2^{1-ab}$$
, $d = ab \binom{n-2}{a+b-2} \binom{a+b-2}{b-1}$, (5)

35

Theorem

If
$$e * 2^{1-ab} * \left(ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \leq 1$$
, $R'(a,b) > n$

We apply Corollary 6 to the set of events $E_{S_1},E_{S_2},\ldots,E_{S_m},$ with $p=2^{1-ab}$, $d=ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$,

$$e * 2^{1-ab} * \left(ab\binom{n}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \le 1 \Longrightarrow \Pr\left[\bigcap_{i=1}^{m} \overline{E}_{S_i}\right] > 0$$
(6)

Theorem

If
$$e * 2^{1-ab} * \left(ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \le 1$$
, $R'(a,b) > n$

We apply Corollary 6 to the set of events $E_{S_1},E_{S_2},\ldots,E_{S_m},$ with $p=2^{1-ab}$, $d=ab\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}$,

$$e * 2^{1-ab} * \left(ab\binom{n}{a+b-2}\binom{a+b-2}{b-1} + 1\right) \le 1 \Longrightarrow \Pr\left[\bigcap_{i=1}^{m} \overline{E}_{S_i}\right] > 0$$
(6)

This non-zero probability (of none of the events E_{S_i} occuring, for $1 \le i \le m$) implies the existence of some bicolouring of the edges of K_n with no monochromatic $K_{a,b}$, thereby establishing the theorem.

b	3	4	5	6	7	8	14	15	16
а									
1	2,3,3	2,3,4	3,4,5	3,5,6	3,5,7	3,6,8	5,10,17	5,11,18	6,12,19
2	3,4,4	3,5,6	4,6,7	5,7,9	5,8,10	6,9,12	9,17,23	10,18,24	10, 19, 26
3	4,5,6	5,7,8	6,8,9	7,10,12	8,12,14	9,14,16	16,26,32	17,29,35	18,31,37
4		6,9,10	8,11,12	10,14,15	12,16,18	14,19,22	26,41,46	28,45,50	30,49,55
5			11,14,16	13,18,20	16,22,24	19,27,29	40,60,65	43,67,72	47,74,80
6				17,23,25	21,29,31	26,35,38	59,87,93	66,98,104	72,109,116
7					27,37,39	34,46,48	86,123,129	96,139,147	106,156,165
8						43,58,61	119,168,178	136,193,204	152,219,232
14							556,755,820	678,922,1005	817,1113,1219
15								836,1136,1246	1019,1385,1525
16									1254,1704,1886

Table 1 : Lower bounds for R'(a, b) from Inequality 1(left), Theorem 5 (middle) and Theorem 7 (right)

Off-diagonal Ramsey-like numbers for complete bipartite subgraphs

R'(a, b, c, d) as the minimum number *n* so that any *n*-vertex simple undirected graph *G* must contain a $K_{a,b}$ or its complement *G'* must contain the complete bipartite graph $K_{c,d}$.

Off-diagonal Ramsey-like numbers for complete bipartite subgraphs

R'(a, b, c, d) as the minimum number *n* so that any *n*-vertex simple undirected graph *G* must contain a $K_{a,b}$ or its complement *G'* must contain the complete bipartite graph $K_{c,d}$.

Theorem

For all $n \in N$ and 0 , if

$$\binom{n}{a}\binom{n-a}{b}p^{ab} + \binom{n}{c}\binom{n-c}{d}(1-p)^{cd} < 1$$
(7)

na, then R'(a, b, c, d) > n.

Existance proof is achieved by proving following explicit bound.

Proof: From Ramsey theorem we know that for any positive integers p and q, R(p,q) always exist.

Existance proof is achieved by proving following explicit bound.

Theorem
$$R'(p,q) \le R(p+q,p+q).$$

Proof: From Ramsey theorem we know that for any positive integers p and q, R(p,q) always exist.

Hence R(p+q, p+q) also exists. R(p+q, p+q) is the minimum number such that any bicoloring of the graph with this number of vertices always contain a monochromatic K_{p+q} .

Existance proof is achieved by proving following explicit bound.

Theorem $R'(p,q) \le R(p+q,p+q).$

Proof: From Ramsey theorem we know that for any positive integers p and q, R(p,q) always exist.

Hence R(p+q, p+q) also exists. R(p+q, p+q) is the minimum number such that any bicoloring of the graph with this number of vertices always contain a monochromatic K_{p+q} .

As K_{p+q} always contains a subgraph $K_{p,q}$, hence the number that guarantees a monochomatic K_{p+q} always guarantees a monochomatic $K_{p,q}$.

Upper Bounds on of R'(a, b)

Theorem

$$R'(a,b) \le 2^a * R'(a-1,b), \ a < b.$$

Theorem

$$if \frac{n(n-1)}{2} \ge 2 * \frac{a}{2} * \sqrt[a]{\frac{b-1}{a!}} * n^{2-\frac{1}{a}} + 1, R'(a, b) < n$$

Table 2 : Upper bounds on R'(a, b) from Theorem 13

Ь	1	2	3	4	5	6	7	8
а								
1	2	4	6	8	10	12	14	16
2		11	19	27	35	43	51	59
3			75	111	147	183	219	255
4				516	687	858	1028	1199
5					3339	4172	5005	5839
6						20742	24890	29037
7							125500	146415
8								7456621

TK Mishra (IIT, Kharagpur)

• An *r*-uniform hypergraph is a hypergraph where every hyperedge has exactly *r* vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)

- An *r*-uniform hypergraph is a hypergraph where every hyperedge has exactly *r* vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)
- R'(a, b, c) is the minimum number n such that any n-vertex 3-uniform hypergraph G(V, E), or its complement G'(V, E) contains a K_{a,b,c}.

- An *r*-uniform hypergraph is a hypergraph where every hyperedge has exactly *r* vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.)
- R'(a, b, c) is the minimum number n such that any n-vertex 3-uniform hypergraph G(V, E), or its complement G'(V, E) contains a K_{a,b,c}.
- K_{a,b,c} is defined as the complete tripartite 3-uniform hypergraph with vertex set A ∪ B ∪ C, where the A, B and C have a, b and c vertices respectively, and K_{a,b,c} has abc 3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C.

R'(1,1,1) = 3;

R'(1,1,1) = 3; with 3 vertices, there is one possible 3-uniform hyperedge which either is present or absent in G.

$$egin{aligned} R'(1,1,2) &= 4.\ R'(1,1,3) &= 5.\ R'(1,1,4) &= 6. \end{aligned}$$

Conjecture.

$$R'(1,1,b) = b + 2.$$

Probabilistic lower bound for R'(a, b, c)

Theorem

$$R'(a,b,c) > \frac{(2\pi)^{\left(\frac{3}{2(a+b+c)}\right)} * a^{\left(\frac{a+\frac{1}{2}}{a+b+c}\right)} * b^{\left(\frac{b+\frac{1}{2}}{a+b+c}\right)} * c^{\left(\frac{c+\frac{1}{2}}{a+b+c}\right)} * 2^{\left(\frac{abc-1}{a+b+c}\right)} e^{(abc-1)} e^{(abc-1)^{2}} e^{($$

Theorem

If
$$e * 2^{1-abc} * \left(abc \binom{n-3}{a+b+c-3} \binom{a+b+c-3}{b-1} \binom{a+c-2}{c-1} + 1 \right) \le 1$$
, $R'(a, b, c) > n$

Table 3 : Lower bounds for R'(a, b, c) by Inequality 14(left) and Theorem 15(right)

	a=2	a=3	a=3	a=3	a=4	a=4	a=5	a=6	a=6	a=6	a=6
с	5	3	4	5	4	5	5	2	3	4	5
b											
2	9,13	8,11	11,16	16,22	18,25	26,36	40,58	11,16	21,29	36,52	59,87
3	16,22	14,19	23,32	35,50	41,61	68,107	124,208		50,74	107,175	209,371
4	26,36		41,61	68,107	84,138	159,281	334,653			277,521	643,1354
5	40,58			124,208		334,653	800,1765				1740,4194

Significance

• it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities *a* and *b* can be guaranteed to have the complete bipartite connectivity property.

Significance

- it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities *a* and *b* can be guaranteed to have the complete bipartite connectivity property.
- In the analysis of social networks it may be worthwhile knowing whether all persons in some subset of *a* persons share *b* friends.

Significance

- it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities *a* and *b* can be guaranteed to have the complete bipartite connectivity property.
- In the analysis of social networks it may be worthwhile knowing whether all persons in some subset of *a* persons share *b* friends.
- In the analysis of transaction systems where either there are many dependent transactions and we need to achieve consistency that either all transactions take place or none of them occur.

• Whether R'(2, b) is equal to 4b - 2.

- Whether R'(2, b) is equal to 4b 2.
- Whether R'(3, b) is non exponential.

- Whether R'(2, b) is equal to 4b 2.
- Whether R'(3, b) is non exponential.
- Constructive tighter lower bound for R'(a, b).

- Whether R'(2, b) is equal to 4b 2.
- Whether R'(3, b) is non exponential.
- Constructive tighter lower bound for R'(a, b).
- Application of Lovász Local Lemma to Hypergraph Covering Problem.

References

- S. A. Burr, Diagonal Ramsey Numbers for Small Graphs, Journal of Graph Theory, 7 (1983) 57-69.
- S. A. Burr and J. A. Roberts, On Ramsey numbers for stars, Utilitas Mathematica, 4 (1973), 217-220.
- [3] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers, Proceedings of the American Mathematical Society, 32 (1972) 389-394.
- [4] Fan R. K. Chung and R. L. Graham, On Multicolor Ramsey Numbers for Complete Bipartite Graphs, Journal of Combinatorial Theory (B) 18, (1975) 164-169.
- [5] P. Erdős and J. Spencer, "Paul Erdős : The Art of Counting", The MIT Press, (1973).
- [6] G. Exoo, H. Harborth and I. Mengersen, On Ramsey Number of K_{2,n}, in Graph Theory, Combinatorics, Algorithms, and Applications (Y. Alavi, F.R.K. Chung, R.L. Graham and D.F. Hsueds.), SIAM Philadelphia, (1989) 207-211.
- [7] F. Harary, Recent Results on Generalized Ramsey Theory for Graphs, in Graph Theory and Applications, (Y. Alavi et al. eds.) Springer, Berlin (1972) 125-138.
- [8] R. Lortz and I. Mengersen, Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs, Results in Mathematics, 41 (2002) 140-149.
- [9] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, (1995) 115-120.
- [10] S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal on Combinatorics (2011).
- [11] D. B. West, Introduction to Graph Theory, Second Edition, Pearson Prentice Hall, 2006.