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Chapter 3

Bisecting and D-secting families for
hypergraphs



B bisects A

Definition 2.1

Let A,B ⊆ [n]. Then, B bisects A if |A ∩ B| ∈ {b |A|2 c, d
|A|
2 e}.

Example 2.2

Let n = 10, A = {1, 2, 3, 6, 7, 8}, C = {4, 5, 6, 7},
B = {1, 3, 5, 8, 10}. Then, |B ∩ A| = 3 = |A|

2 , |B ∩ C | = 1 6= |C |
2 .

XA = {1, 1, 1, 0, 0, 1, 1, 1, 0, 0}, XC = {0, 0, 0, 1, 1, 1, 1, 0, 0, 0},
YB = {1,−1, 1,−1, 1,−1,−1, 1,−1, 1}.
〈XA,YB〉 = 0, 〈XC ,YB〉 = −2 6= 0.
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Equivalent definition

Definition 2.3 (Equivalent)

Let D = {−1, 0, 1}. B bisects A if |A ∩ B| − |A ∩ ([n] \ B)| ∈ D.



B D-sects A - generalizing Definition 2.3

Let [±i ] denote {−i , . . . , 0, . . . , i}.

Definition 2.4

Let D ⊆ [±n]. Then, B D-sects A if |A ∩ B| − |A ∩ ([n] \ B)| ∈ D
( 〈XA,YB〉 ∈ D).

Example 2.5

Let n = 10, A = {1, 2, 3, 6, 7, 8}, C = {4, 5, 6, 7},
B = {1, 3, 5, 8, 10}. Then,
|A ∩ B| − |A ∩ ([n] \ B)| = 〈XA,YB〉 = 0 ∈ D.
|C ∩ B| − |C ∩ ([n] \ B)| = 〈XC ,YB〉 = −2 ∈ D. Therefore, B
D-sects both A and C .



B bisects A

Points: [n] = {1, . . . , n}
Family of subsets of [n]: A
Family of subsets (or bicolorings) of [n]: B

Definition 2.6

B is a bisecting family for A if for every A ∈ A there exists an
B ∈ B such that B bisects A.

Example 2.7

Let A = {{1, 7, 3}, {1, 4, 5, 6}, {2, 3, 6, 1}, {2, 4, 7, 8}}. Then,
B = {{1, 4}, {2, 6, 8}} bisects F . Another family
B′ = {{1, 8, 2, 5}} of smaller cardinality also bisects A.
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B D-sects A

Definition 2.8

Let D ⊆ [±n]. B is a D-secting family for A if for every Ai ∈ A
there exists an Bj ∈ B such that Bj D-sects Ai .

A bisecting family is a D-secting family, where D = [±1].

Notations:
βD(A): min. cardinality of a family B that D-sects A.
βD(n): max. of βD(A) over all families A ⊆ 2[n].

βD(n, k): max. of βD(A) over all families A ⊆
([n]
k

)
.

β[±i ](A): βD(A), when D = [±i ].
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Definitions

Points: {1, . . . , n}
Family of subsets: A
Family of subsets (or bicolorings) of [n]: B
D ⊆ {−n + 1, . . . , n − 1}.

A → B: ∀A ∈ A, ∃B ∈ B - 〈XA,YB〉 ∈ {−1, 0, 1}: B is a
bisecting family for A.

A → B: ∀A ∈ A, ∃B ∈ B - 〈XA,YB〉 ∈ D: B is a D-secting
family for A.
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Results

[±i ] = {−i ,−i + 1, . . . , 0, . . . , i}.

Theorem 2.9

β[±i ](n) = d n2i e, n ∈ N, i ∈ [n]. Proof.

The Chernoff’s bound gives

Theorem 2.10

Let A be a family of subsets of [n] and let m = |A|. Let

i ≥
√

3n ln(2m)
t and t ≤ 1

2 logm. Then, β[±i ](A) ≤ t. Proof.
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Bisecting k-uniform families

Theorem 2.11

For a family F consisting of k-sized subsets of [n] and dependency
d, β[±1](F) ∈ O(

√
k log d).

Lemma 2.12

β[±1](n, k) ≥
{

log(n − k + 2), when k is even and k
2 is odd,

d(logd n
d k

2
ee)e.

Proof.

Lemma 2.13

β[±1](n, k) ∈ Ω(
√

k(n−k)
n ).
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Bisecting k-uniform families...

Theorem 2.14

Let c be a constant such that 0 < c < 1
2 and n ∈ N. If

k ≡ 2 (mod 4) is odd, and cn < k < (1− c)n, then

β[±1](n, k) ≥ δn

, where δ = δ(c) is some real positive constant. Proof.

Theorem 2.15

Let A =
([n]
k

)
∪
( [n]
k+1

)
. . . ∪

([n]
n

)
. Then,

n−k+1
2 ≤ β[±1](A) ≤ min{n2 , n − k + 1}.



D-secting with one-sided error

βi (A): βD(A), when D = {i}.

Theorem 2.16

n−i+1
2 ≤ βi (n) ≤ n − i + 1, n ∈ N, i ∈ [n].

Moreover, β1(n) = dn2e.



Chapter 4

Induced bisecting families for hypergraphs



Definitions

Points: {1, . . . , n}
Family of subsets: A
Family of bicolorings of [n]: B
D ⊆ {−n + 1, . . . , n − 1}.

A

→ B: ∀A ∈ A, ∃B ∈ B - 〈XA,YB〉 ∈ {−1, 0, 1}: B is a
bisecting family for A.

Further, if each ∀B ∈ B, the number of colored points is
0 < d ≤ n and 〈XA,YB〉 = 0: B is an induced bisecting family
of order d for A.

Notations:
βd(A): min. cardinality of a induced bisecting family B for A.
βd(n): max. of βd(A) over all families A ⊆ 2[n].
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Results

2n(n−1)
d2 ≤ βd(n) is easy.

Theorem 3.1

Riehl and Graham Evans Jr. (2003) Given the n quadratics in n
variables x1(x1 − 1), . . . , xn(xn − 1) with 2n common zeros, the
maximum number of those common zeros a polynomial P of degree
k can go through without going through them all is 2n − 2n−k .

Lemma 3.2

βd(n) ≥ n − 1, when d is odd.
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Lemma 3.3

Let d be an integer greater than 1. Then, d ≤ βd(d + 1) ≤ d + 1.
Moreover, βd(d + 1) = d + 1, when d is even.
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v3 v4 v5 v1 v2 v2 v3 v4 v5 v1

X1 X2 X3

X4 X5

Figure : Vertices in (i) P1 and P2 are colored with +1, (ii) P4 and P5 are
colored with -1; the vertex in P3 remains uncolored. Y = {Y1, . . . ,Y5} is
an induced bisecting family when n = d + 1 = 5.
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Theorem 3.4

Let 2 ≤ d ≤ n, where d and n are integers. Then,
2n(n−1)

d2 ≤ βd(n) ≤
(d 2(n−1)

d−1
e

2

)
+ d n−1

d−1e(d + 1). Moreover,

βd(n) ≥ n − 1, when d is odd.
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Theorem 3.5

Let 2 ≤ d ≤ n, where d and n are integers. Then,
2n(n−1)

d2 ≤ βd(n) ≤
(d 2(n−1)

d−1
e

2

)
+ d n−1

d−1e(d + 1). Moreover,

βd(n) ≥ n − 1, when d is odd.

This establishes asymptotically tight bounds on βd(n) for all values
of n, when d is odd. Moreover, the bound is asymptotically tight
when d ∈ O(

√
n), even if d is even.

However, when d ∈ Ω(n0.5+ε) and d is even, the above lower
bound may not be asymptotically tight, for any ε, 0 < ε ≤ 0.5.
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Chapter 5

System of unbiased representatives for a set
of bicolorings
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n: a population of volunteers.
m: the number of attributes.
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Figure : Person-Attribute matrix

A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.



Drug testing
n: a population of volunteers.
m: the number of attributes.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.



Drug testing
n: a population of volunteers.
m: the number of attributes.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.



Drug testing...
A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.

Such a set is an Unbiased representative for the attribute.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A = {1, 2, 3, 4} is an unbiased-representative for attributes age and
weight, but not height.



Drug testing...
A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.
Such a set is an Unbiased representative for the attribute.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A = {1, 2, 3, 4} is an unbiased-representative for attributes age and
weight, but not height.



Drug testing...
A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.
Such a set is an Unbiased representative for the attribute.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A = {1, 2, 3, 4} is an unbiased-representative for attributes age and
weight, but not height.



Drug testing...
A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.
Such a set is an Unbiased representative for the attribute.

Individual

A
tt
ri
b
u
te
s

n

m
1 2 3 4 5 6 7

Age> 65?

Wt > 55?

Ht > 5ft?

-1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1

1 1 1 1 -1 -1 -1

Figure : Person-Attribute matrix

A = {1, 2, 3, 4} is an unbiased-representative for attributes age and
weight, but not height.



Drug testing...
A subset chosen to represent an attribute must contain exactly
equal number of individuals of complementary traits.
B = {2, 4, 5, 6} is an unbiased representative for attributes weight
and height, but not age.
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Figure : Person-Attribute matrix

Yheight = {1, 1, 1, 1,−1,−1,−1}, Yage = {−1,−1, 1, 1, 1, 1, 1},
XB = {0, 1, 0, 1, 1, 1, 0}.

〈Yheight ,XB〉 = 0, 〈Yage ,XB〉 6= 0.
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Definitions
Points: {1, . . . , n}
Family of subsets: A
Family of bicolorings of [n]: B
D ⊆ {−n + 1, . . . , n − 1}.

A

→ B: ∀A ∈ A, ∃B ∈ B - 〈XA,YB〉 ∈ {−1, 0, 1}: B is a
bisecting family for A.

B → A: ∀B ∈ B, ∃A ∈ A - 〈XA,YB〉 = 0: A is a system of
unbiased representatives (SUR) for B.

Definition 4.1

γ(B, [k1, k2], [r1, r2]) The cardinality of any optimal SUR, where

∀B ∈ B : the number of +1’s is at least k1 and at most k2

∀A ∈ A : r1 ≤ |A| ≤ r2.

γ(n, [k1, k2], [r1, r2]) = max
B
γ(B, [k1, k2], [r1, r2]).
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Results

Lemma 4.2

Let F ∈ F(x1, . . . , xn) be a polynomial and S1, . . . ,Sn be
non-empty subsets of F, for some field F. If F vanishes on all but
one point (s1, . . . , sn) ∈ S1 × · · · × Sn ⊆ Fn, then deg(F)
≥∑n

i=1(|Si | − 1).

This can be proved using Combinatorial Nullstellensatz Alon
(1999).
An easy consequence of the above lemma yields
γ(n, [1, n − k], [2, n]) ≥ n − 1.
A = {{1, 2}, {1, 3}, . . . , {1, n}} is a SUR for any collection of
non-monochromatic bicolorings.
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Results...

The Rödl nibble extension Alon et al. (2003):

(n
k

)(2k
k

) ≤ γ(n, k , 2k) ≤
(n
k

)(2k
k

)(1 + o(1)),

provided k ≤ log4 log4(n0.5−ε), for any 0 < ε < 0.5.

γ(n, n2 ,
n
2 ) ≤ n

2 . Moreover, γ(n, n2 ,
n
2 ) ≥ δn if n/2 is even and

n/4 is odd, for some 0 < δ < 1. Proof

Hardness of approximation: (1− Ω(1)) lnm
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Chapter 6

Bisection related problems



Definition 5.1 (Bisection closed families)

A family A consisting of even subsets of [n] is called bisection
closed if for each A,B ∈ A, either A bisects B or B bisects A (or
both).

Let ϑ(n) (ϑ(n, k)) denote the maximum cardinality of any
(respectively, a k-uniform) bisection closed family on [n].
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both).

Let ϑ(n) (ϑ(n, k)) denote the maximum cardinality of any
(respectively, a k-uniform) bisection closed family on [n].



ϑ(n, k) = n :

Follows from Fisher’s Inequality Fisher (1940); Babai and Frankl
(1992).
A quadratic upper bound for ϑ(n) is easy.
If A = {A1, . . . ,At} such that |Ai | ≤ |Aj | implies Aj bisects Ai ,
then |A| ≤ n + 1.
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Theorem 5.2

Let n be an integer more than 30. Then ϑ(n) ≤ 8n(ln n)2

ln ln n .

Proof: Let A be a bisection closed family of subsets of [n] of
maximum cardinality.

1 A0 = {A ∈ A||A| = 0 mod 3}.
2 A1 = {A ∈ A||A| = 1 mod 3}.
3 A2 = {A ∈ A||A| = 2 mod 3}.

Claim 1

|Ai | ≤ n + 1 for i ∈ {1, 2}.
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Proof of |A1| ≤ n + 1

Let A1 = {A1, . . . ,Am} and let a1, . . . , am denote their
corresponding 0–1 incidence vectors.

Construct m polynomials, f1 to fm, in the following way.

fj(x) = 〈aj , x〉 −
i

2
, for 1 ≤ j ≤ m,

Note that since |Ai | ≡ i (mod 3), (i) 〈ai , ai 〉 ≡ i (mod 3), (ii)
i 6≡ i

2 (mod 3) unless i ≡ 0 (mod 3). So, fj ’s are linearly
independent over F3 (see (Jukna, 2011, Lemma 13.11)). This
concludes the proof of the claim.



Proof of |A1| ≤ n + 1

Let A1 = {A1, . . . ,Am} and let a1, . . . , am denote their
corresponding 0–1 incidence vectors.
Construct m polynomials, f1 to fm, in the following way.

fj(x) = 〈aj , x〉 −
i

2
, for 1 ≤ j ≤ m,

Note that since |Ai | ≡ i (mod 3), (i) 〈ai , ai 〉 ≡ i (mod 3), (ii)
i 6≡ i

2 (mod 3) unless i ≡ 0 (mod 3). So, fj ’s are linearly
independent over F3 (see (Jukna, 2011, Lemma 13.11)). This
concludes the proof of the claim.



Proof of |A1| ≤ n + 1

Let A1 = {A1, . . . ,Am} and let a1, . . . , am denote their
corresponding 0–1 incidence vectors.
Construct m polynomials, f1 to fm, in the following way.

fj(x) = 〈aj , x〉 −
i

2
, for 1 ≤ j ≤ m,

Note that since |Ai | ≡ i (mod 3), (i) 〈ai , ai 〉 ≡ i (mod 3), (ii)
i 6≡ i

2 (mod 3) unless i ≡ 0 (mod 3). So, fj ’s are linearly
independent over F3 (see (Jukna, 2011, Lemma 13.11)). This
concludes the proof of the claim.



Size of A0 = {A ∈ A||A| = 0 mod 3} is still unknown.

Consider the collection P = {p1, . . . , pr} of r smallest primes
2 < p1 < . . . < pr such that for any 2 ≤ |A| ≤ n, there exists a
prime p ∈ P with p - |A|.
If we repeat the steps done above for each p ∈ P, then we can
take care of sets of each cardinality in A.
|A| ≤ r · pr · n.



Size of A0 = {A ∈ A||A| = 0 mod 3} is still unknown.
Consider the collection P = {p1, . . . , pr} of r smallest primes
2 < p1 < . . . < pr such that for any 2 ≤ |A| ≤ n, there exists a
prime p ∈ P with p - |A|.

If we repeat the steps done above for each p ∈ P, then we can
take care of sets of each cardinality in A.
|A| ≤ r · pr · n.



Size of A0 = {A ∈ A||A| = 0 mod 3} is still unknown.
Consider the collection P = {p1, . . . , pr} of r smallest primes
2 < p1 < . . . < pr such that for any 2 ≤ |A| ≤ n, there exists a
prime p ∈ P with p - |A|.
If we repeat the steps done above for each p ∈ P, then we can
take care of sets of each cardinality in A.

|A| ≤ r · pr · n.



Size of A0 = {A ∈ A||A| = 0 mod 3} is still unknown.
Consider the collection P = {p1, . . . , pr} of r smallest primes
2 < p1 < . . . < pr such that for any 2 ≤ |A| ≤ n, there exists a
prime p ∈ P with p - |A|.
If we repeat the steps done above for each p ∈ P, then we can
take care of sets of each cardinality in A.
|A| ≤ r · pr · n.



Theorem 5.3

Let n be an even integer. Let A be a bisection closed family of
maximum cardinality, where each A ∈ A has cardinality strictly
greater than n

2 and |A| is even. Then |A| ≤ n
2 + 1.

Lemma 5.4 (Folklore)

Let X1, . . . ,Xm be unit vectors in Rn such that 〈Xi ,Xj〉 ≤ −γ, for
some 0 < γ < 1 and i 6= j . Then, m ≤ 1

γ + 1.

Lemma 5.5

Let Y1,Y2 ∈ {−1, 1}n be incidence vectors corresponding to sets
A1,A2 ⊆ [n], where Y (i) = 1 if i ∈ A and Y (i) = −1 otherwise. If
A1 bisects A2, then 〈Y1,Y2〉 = n − 2|A1|.



Proof.

If A1 bisects A2, then

〈Y1,Y2〉 =(n − |A1| −
|A2|

2
) · 1 (both Y1(i), Y2(i) are -1)

+
|A2|

2
· 1 (both Y1(i), Y2(i) are 1)

+(|A1| −
|A2|

2
) · (−1) (Y1(i) is 1, Y2(i) is -1)

+(
|A2|

2
) · (−1) (Y1(i) is -1, Y2(i) is 1)

=⇒ 〈Y1,Y2〉 =n − 2|A1|.



Proof of Theorem 5.3

For any A ∈ A, let YA ∈ Rn be defined as

YA(i) =

{
1√
n
, if i ∈ A

− 1√
n
, if i 6∈ A.

(1)

In particular, ‖YA‖2 = 1. So, YA is a unit vector corresponding to
A.

From Lemma 5.5, we have the following observation regarding
the dot products of distinct YA and YB .

〈YA,YB〉 =

{
n−2|A|

n , if A bisects B,
n−2|B|

n , if B bisects A.
(2)

Since |A| > n
2 and |B| > n

2 , it follows that 〈YA,YB〉 ≤ − 2
n . So,

using Lemma 5.4, we get, |A| ≤ n
2 + 1.
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Theorem 5.6

Let n be an even integer and let δ > 1. Let A be a bisection closed
family of maximum cardinality, where each A ∈ A has cardinality in

the range [n2 −
√
n

2δ ,
n
2 +

√
n

2δ ]. and |A| is even. Then, |A| ≤ δ2

δ2−1
n.

Lemma 5.7

Alon (2009); Codenotti et al. (2000) Let A be an m ×m real
symmetric matrix with ai ,i = 1 and |ai ,j | ≤ ε for all i 6= j . Let
tr(A) denote the trace of A, i.e., the sum of the diagonal entries of
A. Let rk(A) denote the rank of A. Then,

rk(A) ≥ (tr(A))2

tr(A2)
≥ m2

m + m(m − 1)ε2

.



Proof of Theorem 5.6

Let B be the m × n matrix with YA1 , . . . ,YAm as its rows, where

YA(i) =

{
1√
n
, if i ∈ A

− 1√
n
, if i 6∈ A.

(3)

Using Equation 2,
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Proof of β[±i ](n) = d n2i e

Observe that F ′ = {B1, . . . ,B n
2
} forms a bisecting family for

F = 2[n].



Upper bound for β[±1](n) (contd...)

Lemma 7.1

β[±1](n) ≤ n
2 .

What about a lower bound for β[±1](n)?

log(n), Ω(
√
n).
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Lower bound for β[±1](n)

Notations:
XA = (x1, . . . , xn) ∈ {0, 1}n: 0-1 incidence vector of A.
RA = (r1, . . . , rn) ∈ {−1, 1}n: (−1)-(+1) incidence vector of A.

Observe that 〈XA,RB〉 is equivalent to |A ∩ B| − |A ∩ ([n] \ B)|.
For any even subset Ae , 〈XAe ,RB〉 ∈ {0,±2,±4, . . .} and for any
odd subset Ao , 〈XAo ,RB〉 ∈ {±1,±3,±5, . . .}.



Lower bound for β[±1](n)

Notations:
XA = (x1, . . . , xn) ∈ {0, 1}n: 0-1 incidence vector of A.
RA = (r1, . . . , rn) ∈ {−1, 1}n: (−1)-(+1) incidence vector of A.

Observe that 〈XA,RB〉 is equivalent to |A ∩ B| − |A ∩ ([n] \ B)|.
For any even subset Ae , 〈XAe ,RB〉 ∈ {0,±2,±4, . . .} and for any
odd subset Ao , 〈XAo ,RB〉 ∈ {±1,±3,±5, . . .}.



Lower bound for β[±1](n)

Consider the polynomial M on X = (x1, . . . , xn) ∈ {0, 1}n as

M(X ) =
∏
B∈F ′

(〈X ,RB〉)2 − 1 (4)

, where F ′ is a bisecting family for F = 2[n].

M(X ) is (i) zero when X = XAo for all odd subsets Ao ∈ F ; and
(ii) positive when X = XAe for all even subsets Ae ∈ F .

Let M ′(X ) be the multilinear polynomial obtained from M(X ) by
replacing each higher power of xi in the monomials with xi .

deg(M ′(X )) ≤ deg(M(X )) = 2|F ′|.
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Definition 7.2

A multilinear polynomial P(x1, . . . , xn) weakly represents f if P is
nonzero and for every X = (x1, . . . , xn) where P(X ) is nonzero,
sign(f (X )) = sign(P(X )).

Definition 7.3

The weak degree of a function f is the degree of the lowest degree
polynomial which weakly represents f .

Lemma 7.4 (Minsky, Papert, 1969 †)

The weak degree of the parity function on n variables is n.

Note that M ′(X ) weakly represents the parity function. This gives
us, n ≤ deg(M ′(X )) ≤ deg(M(X )) = 2|F ′|

† Marvin Minsky and Seymour Papert. Perceptron: an introduction to computational
geometry. The MIT Press, Cambridge, expanded edition, 19(88):2, 1969.
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Tight bound for β±i(n)

Lemma 7.5

β±1(n) ≥ dn2e.

Lemmas 7.1 and 7.5 imply

Theorem 7.6

β±1(n) = dn2e.

Generalizing...

Theorem 7.7

β±i (n) = d n2i e.

Back
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Proof of β[±i ](A) ≤ 1
2 logm for i ≥

√
3n ln(2m)

t

pick a set B of t random subsets {B1, . . . ,Bt} of [n], where for
each j , 1 ≤ j ≤ t, a point a ∈ [n] is chosen independently and
uniformly at random into Bj .

Let YBj
= (y1, . . . , yn) ∈ {−1, 1}n: yi is 1 if and only if i ∈ Bj .

For any subset A ∈ A, |A ∩ Bj | − |A ∩ Bj | can be viewed as sum of
|A| random variables distributed uniformly over {−1, 1}. Back
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Proof of β[±i ](n, k) ≥ log(n − k + 2) for k ≡ 2 (mod 4)

Let B = {B1, . . . ,Bt} be a bisecting family for the family

A =
([n]
k

)
.

We associate a graph G (F) in the following way:

V (G (F)) = {S ∈
(

[n]
k
2

)
: S ⊆ A, A ∈ F}

E (G (F)) = {{S1,S2} : S1 ∩ S2 = ∅,S1,S2 ∈ V (G (F))}.

Observe that G (
([n]
k

)
) is the Kneser graph KG (n, k2 ) having

chromatic number n − k + 2(see Bollobás (2004); Aigner et al.
(2010)).
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Observe that G (
([n]
k

)
) is the Kneser graph KG (n, k2 ) having

chromatic number n − k + 2(see Bollobás (2004); Aigner et al.
(2010)).
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Known result: The number of bipartite graphs needed to cover any
graph is log of the chromatic number of the graph. Back
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Proof of β[±1](n, k) ≥ δn

Let C ⊆ {0, 1}n be a set of n-bit binary numbers together called
a binary code.

d(C): the set of all allowed pairwise Hamming distances in
C.

The code C is d-avoiding if d /∈ d(C).

Theorem 10.1 ( Keevash, Long, 2017†)

Let C ⊆ {0, 1}n and let ε satisfy 0 < ε < 1
2 . Suppose that

εn < d < (1− ε)n and d is even. If C is d-avoiding, then
|C| ≤ 2(1−δ)n, for some positive constant δ = δ(ε).

† Peter Keevash and Eoin Long. Frankl-rödl-type theorems for codes and permutations.
Transactions of the American Mathematical Society, 369 (2): 1147–1162, 2017.



Proof of β[±1](n, k) ≥ δn

Proof.

Let F =
([n]
k

)
and let F ′ = {B1,B2, . . .} be a bisecting family for

F of the minimum cardinality.

For every A ∈ F , there exists a B ∈ F ′ s.t. |A ∩ B| = k
2 (an odd

num).

Let XA,XB denote the 0-1 n-dim incidence vector of A, B, resp..
Then, < XA,XB >≡ 1 ( mod 2) when B bisects A (since k

2 is
odd).

Let W denote the vector space generated by the 0-1 incidence
vectors of the sets in F ′ over F2. Let W⊥ be the subspace
which contains all the vectors perpendicular to W .
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Proof of β[±1](n, k) ≥ δn (contd...)

Observation: W⊥ contains no vector of weight k.

Reason: Suppose XA ∈W⊥ has weight k. Then, from the
definition of W , ∃XB ∈W , s.t. < XA,XB >≡ 1 ( mod 2). This
contradicts the definition of W⊥.

That means, for any XB ,XC ∈W⊥, XB + XC has weight
|B4C | 6= k.

The set of all vectors in W⊥ is k-avoiding, where k is even.

Thus, using the Theorem of Keevash and Long, there exists a
positive constant δ = δ(c) such that |W⊥| ≤ 2n(1−δ).

So, dim(W⊥) ≤ n − bδnc. It follows that dim(W ) ≥ bδnc.
Back.
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Hitting set relation

Lemma 11.1

Let B = {B0, . . . ,Bm−1} ⊆ {−1,+1}n be a family of bicolorings of
[n]. Construct the family C = {C1, . . . ,C2m} where
C2i+1 = Bi (+1) and C2i+2 = Bi (−1), for 0 ≤ i ≤ m − 1. Let
H = {h1, h2, h3, . . .} denote a hitting set for C. Define
A = {(h1, hq)|hq ∈ H, q > 1}. Then, A is a SUR for B of
cardinality |H| − 1.

∀B ∈ B, if εn ≤ |B(+1)| ≤ (1− ε)n and d be the VC-dimension of
C, using a result of (Komlós et al., 1992), we can obtain a hitting
set for C of cardinality d

ε (ln 1
ε + 2 ln ln 1

ε + 6).
This also helps in establishing the inapproximability result for SUR
using another result of (Dinur and Steurer, 2014).

Back.
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Theorem 11.2

γ(n, n2 ,
n
2 ) ≤ n

2 . Moreover, γ(n, n2 ,
n
2 ) ≥ δn if n/2 is even and n/4 is

odd, for some 0 < δ < 1.

Proof.

Let A1 = {1, 2, . . . , n2},A2 = {2, 3, . . . , n2 + 1}, . . . ,A n
2

=
{n2 , n2 + 1, . . . , n − 1}.
C = {C1, . . . ,C( n

n
2
)}, where Ci corresponds to the +1 colored

points of Bi ∈ B.
〈YBi

,XA〉 = 0→ 〈XCi
,XA〉 = n

4 (1 over F2).
V ⊂ {0, 1}n denote the vector space spanned by the vectors XA’s,
V⊥ is n

4 -avoiding.
Using (Keevash and Long, 2017), the lower bound follows.
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