Bounds on Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology
by
Tapas Kumar Mishra 11CS60R32

Under the supervision of Prof. Sudebkumar Prasant Pal

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

West Bengal 721302, India
April, 2013

Declaration by the Author of the Project Report

I, Tapas Kumar Mishra, Roll No. 11CS60R32, registered as a student of M.Tech program in the Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India (hereinafter referred to as the 'Institute') do hereby submit my project report, titled: Bounds on Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs (hereinafter referred to as 'my thesis') in a printed as well as in an electronic version for holding in the library of record of the Institute. I hereby declare that:

1. The electronic version of my thesis submitted herewith on CDROM is in PDF Format.
2. My thesis is my original work of which the copyright vests in me and my thesis does not infringe or violate the rights of anyone else.
3. The contents of the electronic version of my thesis submitted herewith are the same as that submitted as final hard copy of my thesis after my viva voce and adjudication of my thesis in April 2013.
4. I agree to abide by the terms and conditions of the Institute Policy and Intellectual Property (hereinafter Policy) currently in effect, as approved by the competent authority of the Institute.
5. I agree to allow the Institute to make available the abstract of my thesis in both hard copy (printed) and electronic form.
6. For the Institute's own, non commercial, academic use I grant to the Institute the non-exclusive license to make limited copies of my thesis in whole or in part and to loan such copies at the Institute's discretion to academic persons and bodies approved of from time to time by the Institute for non-commercial academic use. All usage under this clause will be governed by the relevant fair use provisions in the Policy and by the Indian Copyright Act in force at the time of submission of the thesis.
7. Furthermore,
(a) I agree to allow the Institute to place such copies of the electronic version of my thesis on the private Intranet maintained by the Institute for its own academic community.
(b) I agree to allow the Institute to publish such copies of the electronic version of my thesis on a public access website of the Internet should it so desire.
8. That in keeping with the said Policy of the Institute I agree to assign to the Institute (or its Designee/s) according to the following categories all rights in inventions, discoveries or rights of patent and/or similar property rights derived from my thesis where my thesis has been completed.
(a) With use of Institute-supported resources as defined by the Policy and revisions thereof,
(b) With support, in part or whole, from a sponsored project or program, vide clause 6(m) of the Policy. I further recognize that:
(c) All rights in intellectual property described in my thesis where my work does not qualify under sub-clauses 8(a) and/or 8(b) remain with me.
9. The Institute will evaluate my thesis under clause 6(b1) of the Policy. If intellectual property described in my thesis qualifies under clause 6(b1) (ii) as Instituteowned intellectual property, the Institute will proceed for commercialization of the property under clause $6(\mathrm{~b} 4)$ of the policy. I agree to maintain confidentiality as per clause 6(b4) of the Policy.
10. If the Institute does not wish to file a patent based on my thesis, and it is my opinion that my thesis describes patentable intellectual property to which I wish to restrict access, I agree to notify the Institute to that effect. In such a case no part of my thesis may be disclosed by the Institute to any person(s) without my written authorization for one year after the date of submission of the thesis or the period necessary for sealing the patent, whichever is earlier.

Tapas Kumar Mishra
Prof. Sudebkumar Prasant Pal
(Name of the Student)
(Name of Supervisor)

Department: Computer Science and Engineering

Signature of the Head of the Department

Certificate

This is to certify that the thesis entitled Bounds on Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs, submitted by Tapas Kumar Mishra, in the Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India, for the award of the degree of Master of Technology, is a record of an original research work carried out by him under my supervision and guidance. The thesis fulfils all the requirements as per the regulations of this institute. Neither this thesis nor any part of it has been submitted for any degree or academic award elsewhere to the best of my knowledge.

Prof. Sudebkumar Prasant Pal
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, India 721302

Acknowledgement

I would like to express my gratitude towards my supervisor Prof. Sudebkumar Prasant Pal for his immense help, motivation, and guidance to carry out this work. His continued support in the form of discussion, constructive criticism, and clear understanding has helped me to proceed in the right direction. I am really indebted to him for giving me a wide exposure to the field of graph theory, geometric graphs, randomized and approximation algorithms. Without his invaluable advice and supervision, it would not be possible to complete this work. Finally, I would like to thank all professors, lab administrators and friends for their continuous and unconditional support.

Tapas Kumar Mishra

Contents

1 Introduction 1
1.1 Introduction 1
1.2 Our Contribution and Significance 3
1.3 Organization of the Thesis 4
2 Preliminaries and Existing Results 5
2.1 Pigeonhole principle 5
2.2 Pre-history and early history 6
2.2.1 David Hilbert's cube lemma 1892 7
2.2.2 The Issai Schur Theorem 1916 7
2.2.3 The Baudet-Schur-Van der Waerden Theorem 1927 8
2.2.4 Original Ramsey principles 8
2.2.5 Happy end problem 9
2.3 Some basic results for Ramsey numbers 9
2.4 Definition of $R\left(K_{a, b}, K_{a, b}\right), R\left(K_{a, b}, K_{c, d}\right)$ and $R^{\prime}(a, b, c)$ and previous work 12
3 The unbalanced diagonal case :
$R\left(K_{a, b}, K_{a, b}\right)$ 14
$3.1 \quad R\left(K_{1, b}, K_{1, b}\right)=2 b$, if b is odd and $2 b-1$ if b is even 15
3.2 Lower bounds for $R\left(K_{2, b}, K_{2, b}\right)$ for small values of b. 16
3.3 A constructive lower bound for $R\left(K_{2, b}, K_{2, b}\right)$ 19
3.4 Probabilistic lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$ 21
3.4.1 Application of the probabilistic method 21
3.4.2 \quad A lower bound for $R\left(K_{a, b}, K_{a, b}\right)$ using Lovász' local lemma 25
4 The unbalanced off-diagonal case:
$R\left(K_{a, b}, K_{c, d}\right)$ 27
4.1 A constructive lower bound for $R\left(K_{2, b}, K_{2, d}\right)$ 27
4.2 A lower bound for $R\left(K_{a, b}, K_{c, d}\right)$ using Lovász' local lemma 31
4.3 The balanced off-diagonal case: $R\left(K_{a, a}, K_{b, b}\right)$ 33
5 Upper Bounds on $R\left(K_{a, b}, K_{a, b}\right)$ and
$R\left(K_{a, b}, K_{c, d}\right)$ 35
5.1 Existence and General Upper Bound 35
5.2 A Bad Upper Bound on $R\left(K_{a, b}, K_{a, b}\right)$ 36
5.3 Comparision of the Upper Bounds 37
5.4 Inductive upper bound for $R\left(K_{a, b}, K_{c, d}\right)$ 38
5.5 Edge analysis for $K_{a, b}$ free structures 39
6 Lower bounds for Ramsey numbers for complete tripartite 3-uniform sub- graphs 44
$6.1 \quad R^{\prime}(a, b, c)$ for small values of a, b, c 44
6.2 Probabilistic lower bound for $R^{\prime}(a, b, c)$ 47
6.3 A lower bound for $R^{\prime}(a, b, c)$ using Lovász' local lemma 48
7 Conclusion 50
A Code for solving Inequalities $3.123,24,45.15$ 54
A. 1 Code for solving Inequality 3.1 54
A. 2 Code for solving Inequality 23 54
A. 3 Code for extracting lowerbound from Theorem 24 55
A. 4 Code for extracting upperbound from Inequality 5.15 55
B Code for proving $R\left(K_{2,3}, K_{2,3}\right)>7, R^{\prime}(1,1,3 ; 3)>5$ and $R^{\prime}(1,1,4 ; 3)>6$ 57
B. $1 \quad R\left(K_{2,3}, K_{2,3}\right)>7$ 57
B. $2 \quad R^{\prime}(1,1,3 ; 3)>5$ 59
B. $3 \quad R^{\prime}(1,1,4 ; 3)>6$ 61

List of Figures

3.1 (a) pigeonhole explanation (b) $b-1=2 m$ for $b=5$ (c) $b-1=2 m+1$for $b=6$15
$3.2 \quad G$ and G^{\prime} with $n=4$ and $n=5$ without a $K_{2,2}$ 16
$3.3 \quad G$ and G^{\prime} with $n=7$ without a $K_{2,3}$ 18
$3.4 \quad G$ and G^{\prime} with $n=9$ without a $K_{2,4}$ 18
3.5 Construction of G (left two): generation of B_{1}, B_{2} and addition of edges.
Resulting G^{\prime} (rightmost): In G^{\prime}, B_{1} and B_{2} become K_{b}, and B_{1} and B_{2}have a perfect matching.19
$3.6 G$ and G^{\prime} with $n=11$ without a $K_{3,3}$ 20
4.1 (i) $R\left(K_{2,4}, K_{2,6}\right)>11$: (a) graph G_{1} is $K_{2,4}$-free, and and (b) graph G_{1}^{\prime}is $K_{2,6}$-free, (ii) $R\left(K_{2,3}, K_{2,4}\right)>8$: (c) graph G_{2} is $K_{2,3}$-free, and and (d)graph G_{2}^{\prime} is $K_{2,4}$-free, (iii) $R\left(K_{2,3}, K_{2,5}\right)>9$: (e) graph G_{3} is $K_{2,3}$-free,and (f) graph G_{3}^{\prime} is $K_{2,5}$-free.28
5.1 Construction for the upper bound. 36
5.2 Addition of maximum edges with graph free from $K_{2,2}$ with $n=4$ and n $=5$. 41
6.1 Hypergraph $G($ left $)$ and its complement G^{\prime} (right) each free from $K_{1,1,3}$ 45

List of Tables

3.1 Lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$ from Inequality 3.1(left), Theorem 22 (middle) and Theorem $24 \mid$ (right) 21
4.1 Lower bounds for $R\left(K_{a, b}, K_{c, d}\right)$ from Theorem 26 (left) and Theorem 27 (right) 32
5.1 Upper bounds on $R\left(K_{a, b}, K_{a, b}\right)$ from 5.15 42
5.2 Comparision of Upper bounds on $R\left(K_{a, a}, K_{a, a}\right)$ from 5.15 and 5.1 42
6.1 Lower bounds for $R^{\prime}(a, a, a)$ by Theorem 34 (left) and Theorem|35 (right) 46
6.2 Lower bounds for $R^{\prime}(a, b, c)$ by Theorem 34 (left) and Theorem 35 (right) 47

Abstract

Ramsey theory is a fundamental, approximately 100-year-old field of mathematics that entails and subsumes various concepts of combinatorics, number theory, geometry, topology, combinatorial geometry, set theory, measure theory, and so on. Ramsey theory is the unification of some ingenious, masterpieces of ideas, and some of its results are among the most beautiful theorems of mathematics. The main mathematical idea of Ramsey theory is this: for any system S, and any large positive integer k, we can choose a large enough supersystem N so that no matter how N is colored with k colors, N always contain a monochromatic copy of S. There are many interpretations of the theory, but we put our focus on the graph interpretation. To be precise, $R\left(G_{1}, G_{2}\right)$ denote the smallest integer such that for every undirected graph G with $R\left(G_{1}, G_{2}\right)$ or more vertices, either (i) G contains G_{1} as subgraph, or (ii) the complement graph G^{\prime} of G contains G_{2} as subgraph. Traditionally G_{1} and G_{2} were assumed to be complete graphs and many theories evolved based on these assumptions. So a natural question arises: what happens if G_{1} and G_{2} are not complete graphs, but rather some other structures? We focus our attention on one such case where G_{1} and G_{2} are complete bipartite graphs. In particular, $R\left(K_{a, b}, K_{c, d}\right)$ be the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain a $K_{c, d}$. We demonstrate constructions to show that $R\left(K_{2, b}, K_{2, b}\right)>2 b+1$ and $R\left(K_{2, b}, K_{2, d}\right)>b+d+1$ for $d \geq b \geq 2$. We establish a lower bound for $R\left(K_{a, b}, K_{a, b}\right)$ using the probabilistic method that improves over the lower bound given by Chung and Graham [4]. We also establish a lower bound for $R\left(K_{a, b}, K_{c, d}\right)$ using probabilistic methods. We prove an upper bound for $R\left(K_{a, b}, K_{a, b}\right)$ and also for the more general case of $R\left(K_{a, b}, K_{c, d}\right)$ using the Kövári-Sös-Turán theorem. We define $R^{\prime}(a, b, c)$ to be the minimum number n such that any n-vertex 3-uniform hypergraph $G(V, E)$, or its complement $G^{\prime}\left(V, E^{c}\right)$ contains a $K_{a, b, c}$. Here, $K_{a, b, c}$ is defined as the complete tripartite 3-uniform hypergraph with vertex set $A \cup B \cup C$, where the A, B and C have a, b and c vertices respectively, and $K_{a, b, c}$ has $a b c$ 3-uniform hyperedges $\{u, v, w\}, u \in A, v \in B$ and $w \in C$. We establish the upper bound of $2 b+1$ for $R^{\prime}(1,1, b)$. We also relate $R^{\prime}(1,1, b)$ to the existence of a $2-(2 b-1,3, b-1)$ design. We derive lower bounds for $R^{\prime}(a, b, c)$ using probabilistic methods.

Keywords: - Ramsey numbers, bipartite graphs, local lemma, probabilistic method, r-uniform hypergraph, t -designs

Chapter 1

Introduction

1.1 Introduction

Ramsey Theory is the branch of mathematics that deals with the basic question of minimum number of elements of a particular structure that must be present so that a particular property holds. Ramsey Theorem states that in any coloring of the edges of a sufficiently large complete graph, one will always find monochromatic complete subgraphs. For example, consider a complete graph of order n; that is, there are n vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now color every edge red or blue. How large must n be in order to ensure that there is either a blue triangle or a red triangle?

Paul Erdős who was the leading exponent of Ramsey theory always used to ask two particular questions, first of which explains the concept and the second one emphasizes on the degree of difficulty in solving the problems. The first problem has been named the Party problem. Given 6 people who have been invited to a party can we always find a subset of 3 people all of whom know each other or all of who do not know each other? The problem is equivalent to asking if every coloring of the edges of the complete graph on 6 vertices in the colors black and white contains a subgraph of 3 vertices for which the edges running between these vertices are either all black or all white. The least number of vertices on which the complete graph on these vertices guarantees such a set of 3 vertices is denoted $R(3,3)$. Ramsey type problems typically involve some form of
partitioning. In the above example we partitioned the pairs of invitees into 2 sets, those pairs who knew each other and those pairs that did not. Then we asked if we could find 3 pairs in either of the partitions with the property that they formed a triangle of 3 people.

In a typical Ramsey problem we not only insist that our object of interest appear as a substructure of some superstructure, we also ask: how large must our superstructure be so that no matter how we partition it into a given number of parts, one of the partitions contains the desired substructure? Erdős's second problem is that suppose an evil alien would tell mankind to either tell them the value of $R(5,5)$ or they will exterminate the human race, what should they do, what if the aliens asked for value of $R(6,6)$. Erdos says that for $R(5,5)$, It would be best to try to compute it, both by mathematics and with a computer, but if they ask $R(6,6)$, then the best thing would be to destroy them before they destroy us, because we cannot. This is because $R(6,6)$ is known to be lower bounded by 102 , so the possible number of graphs is $2\binom{(102}{2}$, which is beyond the computational power of any man and machine.

And even more fascinating thing is that for any natural numbers a, b, Ramsey theory proves that $R(a, b)$ always exist. But as it is impossible to compute the exact values of Ramsey numbers for even very small values of a and b, most of the results in this field are non-constructive.

More precisely, Ramsey theorem states that -for any given number of colors c, and any given set of subgraphs G_{1}, \ldots, G_{c}, there is a number $R\left(G_{1}, \ldots, G_{c}\right)$ such that: if the edges of a complete graph of order $R\left(G_{1}, \ldots, G_{c}\right)$ (or more) are colored with c different colours, then for some i between 1 and c, it must contain a subgraph G_{i} whose edges are all color i. This number $R\left(G_{1}, \ldots, G_{c}\right)$ is called the Ramsey number for G_{1}, \ldots, G_{c}. In particular, $n=R\left(K_{a}, K_{b}\right)$ is the smallest number of vertices so that any undirected graph G with n or more vertices contains either a K_{a} or an independent set of size b. We know that $R\left(K_{3}, K_{3}\right)=6, R\left(K_{3}, K_{4}\right)=9, R\left(K_{4}, K_{4}\right)=18, R\left(K_{4}, K_{5}\right)=25, R\left(K_{3}, K_{8}\right)=28$ and $R\left(K_{3}, K_{9}\right)=36$ (see [12, 13]).

Ramsey theorem is a foundational result in combinatorics. Ramsey theory seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In the application above, it is a question of the existence of monochromatic subsets, that is, subsets of connected edges of just one colour. Hence, there are many variants of Ramsey type structure. We focus on a specific kind Ramsey theory where
we try to find the complete bipartite subgraphs and multipartite hypergraphs within colorings of complete graphs and compelete hypergraphs.

1.2 Our Contribution and Significance

We define $R\left(K_{a, b}, K_{a, b}\right)$ as the minimum number n of vertices so that any n-vertex simple undirected graph G or its complement G^{\prime} must contain the complete bipartite graph $K_{a, b}$. Equivalently, $R\left(K_{a, b}, K_{a, b}\right)$ is the minimum number n of vertices such that any bicoloring of the edges of the n-vertex complete undirected graph K_{n} would contain a monochromatic $K_{a, b}$. Again for the more general case, let $R\left(K_{a, b}, K_{c, d}\right)$ be the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain a $K_{c, d}$. We refer to $R\left(K_{a, b}, K_{a, b}\right)$ as unbalanced diagonal case and $R\left(K_{a, b}, K_{c, d}\right)$ as unbalanced off-diagonal case. As stated earlier, finding the exact values of these numbers is really difficult, hence we use some constructive techniques for smaller values and probabilistic methods for the general case and establish some lower bounds. We define $R^{\prime}(a, b, c)$ to be the minimum number n such that any n-vertex 3-uniform hypergraph $G(V, E)$, or its complement $G^{\prime}\left(V, E^{c}\right)$ contains a $K_{a, b, c}$. We establish a upper bound on $R^{\prime}(1,1, b)$, relate $R^{\prime}(1,1, b)$ to the existence of a $2-(2 b-1,3, b-1)$ design and derive lower bounds for $R^{\prime}(a, b, c)$ using probabilistic methods.

The significance of such a number is that it gives us the minimum number of vertices needed in a graph so that two mutually disjoint subsets of vertices with cardinalities a and b can be guaranteed to have the complete bipartite connectivity property as mentioned. In the analysis of social networks it may be worthwhile knowing whether all persons in some subset of a persons share b friends, or none of the a persons of some other subset share friendship with some set of b persons. This can also be helpful in the analysis of dependencies, where there are many entities in one partite, which are all dependent on entities in the other partite; we need to achieve consistencies that either all dependencies exist between a pair of two partites, or none of the dependencies exist between possibly another pair of two partites. These Ramsey numbers are different from the usual Ramsey numbers $R\left(K_{a}, K_{b}\right)$, where instead of complete bipartite subgraphs, we look for the existence of complete subgraphs. The bipartite version of the party problem may be stated like this: Given 6 people who have been invited to a party can we always find a subset of 2 people all of whom know some other group of 2 people or

1.3. Organization of the Thesis

2 people both of whom are strangers with some other group of 2 people ? In fact we always can. This is because the above problem actually asks us whether $R\left(K_{2,2}, K_{2,2}\right) \leq 6$ and it is known that $R\left(K_{2,2}, K_{2,2}\right)$ is equals to 6 .

1.3 Organization of the Thesis

The cases we study for bipartite graphs as subgraphs are (i) the unbalanced diagonal case for $R\left(K_{a, b}, K_{a, b}\right)$, (ii) the balanced off-diagonal case for $R\left(K_{a, a}, K_{b, b}\right)$, and (iii) the unbalanced off-diagonal case for $R\left(K_{a, b}, K_{c, d}\right)$. The thesis is broken into several Chapters. In Chapter 2, we do a survey of some of the significant earlier works on this field. In Chapter 3, we consider the unbalanced diagonal case i.e. Ramsey numbers $R\left(K_{a, b}, K_{a, b}\right)$, derive the value of $R\left(K_{1, b}, K_{1, b}\right)$, lower bounds for $R\left(K_{2, b}, K_{2, b}\right)$ for small values of b, a combinatorial constructive lower bound for $R\left(K_{2, b}, K_{2, b}\right)$ and lower bounds for the arbitrary a, b using probabilistic methods. In Chapter 4, we consider the balanced off-diagonal case i.e. Ramsey numbers $R\left(K_{a, b}, K_{c, d}\right)$, derive constructive lower bound for $R\left(K_{2, b}, K_{2, d}\right)$, lower bounds for the arbitrary a, b, c, d using probabilistic methods and extend the results for the balanced off-diagonal case i.e. for Ramsey numbers $R\left(K_{a, a}, K_{b, b}\right)$. In Chapter 5, we prove the existence of such numbers for all natural numbers a, b and perform upper bound analysis of $R\left(K_{a, b}, K_{a, b}\right)$ and $R\left(K_{a, b}, K_{c, d}\right)$. In Chapter 6 we extend similar methods for 3-uniform tripartite hypergraphs, deriving lower bounds for the Ramsey numbers $R^{\prime}(a, b, c)$. Here, $R^{\prime}(a, b, c)$ is the minimum number n such that any n-vertex 3-uniform hypergraph $G(V, E)$, or its complement $G^{\prime}\left(V, E^{c}\right)$ contains a $K_{a, b, c}$. Here, $K_{a, b, c}$ is defined as the complete tripartite 3-uniform hypergraph with vertex set $A \cup B \cup C$, where the A, B and C have a, b and c vertices respectively, and $K_{a, b, c}$ has $a b c$ 3-uniform hyperedges $\{u, v, w\}, u \in A, v \in B$ and $w \in C$. In Chapter 7 we conclude with a few remarks and future research directions.

Chapter 2

Preliminaries and Existing Results

A graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected objects are represented by vertices, and the links that connect some pairs of vertices are called edges. Formally a graph G is represented as $G(V, E)$, where V is the set of vertices of the graph, E is the set of edges of the graph. Each edge in E is represented as (u, v), where $u, v \in V$ and u, v are the vertices between which the edge is present. A graph is undirected if all the edges in the graph are undirected. A graph is simple if it does not contain any self loops or parallel edges. Through out the thesis, graph stands for a simple, undirected graph. Hypergraph is a generalization of a graph in which an edge can connect any number of vertices. Formally a hypergraph H is a pair $H=(V, S)$, where V is the set of vertices of the graph, S is the set of hyperedges of the graph, each hyperedge being some nonempty collection of vertices. Hence $S \subseteq \operatorname{POWERSET}(V)-\phi$. A Hypergraph is called r-uniform if all the hyperedges present in the graph consists of r vertices.

Edge coloring is the assignment of colors to all the edges in the graph. For example, in edge coloring with two colors, we color all the edges using two colors. Throughout the thesis, coloring stands for edge coloring.

2.1 Pigeonhole principle

Definition 1. The Pigeonhole principle states that if m items are put into n pigeonholes
with $m>n$, then at least one pigeonhole must contain more than one item. In general, if $m n+1$ items are placed in n pigeonholes, then there will be at least one pigeonhole with $m+1$ or more items in it.

The Pigeonhole Principle sounds trivial but its applications are not so subtle in most of the cases. Many of the arguments given for proving bounds on Ramsey numbers use this principle(eg. the proof of theorem $R(3,3)=6$ uses this, see section below). One such ramsey type result given by Erdős and Szekeres that is a direct consequence of pigeonhole principle detailed below.

Theorem 1 (Erdős and Szekeres). Given a sequence of mn +1 distinct real numbers, if it does not contain a monotone increasing subsequence of length $m+1$ then it must contain a monotone decreasing subsequence of length $n+1$.

Proof We prove the statement by contradiction. Let $S:=\left\{a_{1}, \ldots, a_{m n+1}\right\}$ be a sequence of $m n+1$ distinct real numbers. Assume that the result is false i.e. assume S contains neither a monotone increasing subsequence of length $m+1$ nor a monotone decreasing subsequence of length $n+1$.

For each number a_{k} in the sequence, form the ordered pair $\left(i_{k}, j_{k}\right)$, where i_{k} is the length of the longest increasing subsequence beginning with a_{k}, and j_{k} is the length of the longest decreasing subsequence ending with a_{k}. Then, since the result is false, $1 \leq i_{k} \leq m$ and $1 \leq j_{k} \leq n$. Thus we have $m n+1$ ordered pairs, of which at most $m n$ are distinct. Hence by pigeonhole principle, two members of the sequence, say x and y, are associated with the same ordered pair (s, t). Without loss of generality we may assume that x precedes y in the sequence.

If $x<y$, then x, together with the longest increasing subsequence beginning with y, is an increasing subsequence of length $(s+1)$, contradicting the fact that s is the length of the longest increasing subsequence beginning with x. Hence $x \geq y$. But then, y, together with the longest decreasing subsequence ending with x, is a subsequence of length $(t+1)$, contradicting that the longest decreasing subsequence ending with y is of length t. Hence our assumption has to be false, and the result is therefore true.

2.2 Ramsey theory: Pre-history and early history

There are some significant results preceding the birth of Ramsey theory and of the early days. Each one of these results is special in its own right and suggest concepts funda-
mental to extremal theory. We discuss only some of the selected results that in the order they originated.

2.2.1 David Hilbert's cube lemma 1892

This was the first Ramseyan result published by David Hilbert in 1892, merely as a tool for his study of irreducibility of rational functions with integral coefficients. A set $Q_{n}\left(a, x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers is called an n-dimensional affine cube if there exists $n+1$ positive integers $a, x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\begin{equation*}
Q_{n}\left(a, x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{a+\sum_{i \in F} x_{i}: \phi \neq F \subset\{1,2, \ldots, n\}\right\} \tag{2.1}
\end{equation*}
$$

Let us denote the starting segment of positive integers $\{1,2, \ldots, n\}$ as $[n]$. Now the lemma can be stated as follows.

Lemma 1 (The Hilbert's Cube Lemma). For every pair of positive integers r, n, there exists a least positive integer $m=H(r, n)$ such that in every r coloring of a $[m]$, there exists a monochromatic r-affine cube.

It seems that David Hilbert's monochromatic cube lemma was the first example of Ramseyan mathematics. Apparently nobody, including Hilbert, appreciated the lemma much. Hilbert did not continue research in the direction the lemma showed. The lemma was added as the first instance of Ramseyan thought, but failed to influence the field much at that time.

2.2.2 The Issai Schur Theorem 1916

Issai Schur, in his pioneering paper Über Die Congruenz $x^{m}+y^{m} \equiv z^{m} \bmod p$, created, as he puts it "a very simple lemma, that belongs to combinatorics more than number theory". The proof stated uses another lemma stated below.

Lemma 2 (R. E. Greenwood and A. M. Gleason 1955). For an positive integer n, there exists a positive integer $S(n)$ such that any n coloring of edges of $K_{S(n)}$ would always contain a monochromatic triangle K_{3}.

Theorem 2 (Issai Schur). For any positive integer n there exists a positive integer $S(n)$ such that any n coloring of the set $[S(n)]$ contains integer a, b, c of same color such that $a+b=c$.

Proof Let all the positive integers be colored with the n colors. By Theorem 2, there exists a $S(n)$ such that edge coloring of $K_{S(n)}$ would always contain a monochromatic K_{3}. Construct the complete graph $K_{S(n)}$ with $[S(n)]=\{1,2, \ldots, S(n)\}$ as vertices. Color the edge (i, j) with the color of $|i-j|$ th number, which were colored earlier. So we get a complete graph $K_{S(n)}$ whose edges are coloured with n colors. By Theorem 2 , there exists a monochromatic K_{3}. Let it be $\{i, j, k\}$ with $i>j>k$, whose edges $i j, j k, i k$ are coloured with same color.

Let $a=i-j, b=j-k$ and $c=i-k$. As the edges are colored in the same color, a, b, c must be colored in same color in the original coloring. Now $a+b=i-j+j-k$ $=i-k=c$. Hence theorem is proved.

2.2.3 The Baudet-Schur-Van der Waerden Theorem 1927

In trying to prove his own conjectures, Schur realized he needs to conjecture another simple lemma. But Baudet created the same conjecture independently, which was proven by Bartel Leendert van der Waerden in 1927. This opened the path way for many more results and marked the beginning of another theory.

Theorem 3 (Baudet-Schur-Van der Waerden). For any k, l, there is a $W=W(k, l)$ such that any k coloring of the set $[W]$ always contain a l-term monochormatic arithmetic progression.

2.2.4 Original Ramsey principles

in 1928, Frank Ramsey submitted a paper that got published after his death in 1930. This paper contained a infinite and a finite version of the theorem that is since than being referred to as Ramsey Theorem.

Theorem 4 (Infinite Ramsey 1930). For any positive integers k and r, if the collection of all r-element subsets of an infinite set S is colored in k colors, then S contains an infinite subset S_{1} such that all r-element subsets of S_{1} are assigned the same color.
Theorem 5 (Finite Ramsey 1930). For any positive integers r, n, and k there is an integer $m_{0}=R(r, n, k)$ such that if $m \geq m_{0}$ and the collection of all r-element subsets of an m-element set S_{m} is colored in k colors, then S_{m} contains an n-element subset S_{n} such that all r-element subsets of S_{n} are assigned the same color.

This was a evolutionary result as all the previous results were confined to a particular setting, but this was the most generic one and opened the ways for various new results.

2.3. Some basic results for Ramsey numbers

In the thesis, we use the graph interpretation of the finite Ramsey theorem. Following theorem uses Ramsey numbers as a tool for proving the existence of another interesting result.

2.2.5 Happy end problem

Theorem 6 (Erdős and Szekeres). For any integer $n \geq 3$, there exists a smallest positive integer $N(n)$ such that any set of at least $N(n)$ points in general position in the plane (i.e., no three of the points are on a line) contains n points that are the vertices of a convex n-gon.

The following simple proof is due to Micheal Tarsi which uses the Ramsey numbers to bound $N(n)$.
Proof Let $n \geq 3$ be a positive integer. By the Ramsey principle $5(r=3$ and $k=2)$ there is an integer $m_{0}=R(3, n, 2)$ such that, if $m>m_{0}$ and the collection of all 3-element subsets of an m-element subset S_{m} are colored in two colors, then S_{m} contains an n element subset S_{n} such that all 3-element subsets of S_{n} are assigned the same color. Let now S_{m} be a set of m points in the plane in general position labelled with integers $1,2, \ldots, m$. We color a 3 -element set $\{i, j, k\}$ where $i<j<k$, red if we travel from i to j to k in a clockwise direction, and blue if counter-clockwise. By the assertion above, S_{m} contains a n-element subset S_{n} such that all 3-element subsets of S_{n} are assigned the same color, that is, have the same orientation. But this means precisely that S_{n} forms a convex n-gon. Hence $N(n) \leq R(3, n, 2)$.

Erdôs and Szekeres proved that for any positive integer $n>3,2^{n-2}<N(n) \leq$ $\binom{2 n-4}{n-2}+1$ and they conjectured that for any positive integer $n>3, N(n)=2^{n-2}+1$. This conjecture is called as Happy end conjecture and is open till date.

From now onwards, we focus only on the graph interpretation of finite Ramsey theorem. We first define the numbers and discuss some of the results from earlier works.

2.3 Some basic results for Ramsey numbers

$R\left(K_{a}, K_{b}\right)$ is the smallest number of vertices so that any undirected graph G with $R\left(K_{a}\right.$, K_{b}) or more vertices contains either a K_{a} or its complement graph G^{\prime} contains a K_{b}. It follows from the definition of Ramsey Theorem that for positive integers a and b,
$R\left(K_{a}, K_{b}\right)=R\left(K_{b}, K_{a}\right)$. It is not that difficult to note $R\left(K_{1}, K_{k}\right)=1$, as any graph with 1 vertex trivially contains a K_{1}.

Theorem 7. $R\left(K_{2}, K_{b}\right)=b$ for all $b \geq 2$.
Proof Choose some positive integer $b \geq 2$. First we will show that $R\left(K_{2}, K_{b}\right)>b-1$ by constructing a 2 -coloring on K_{b-1} that contains neither a red K_{2} nor a blue K_{b}. The coloring in which every edge is blue satisfies these requirements. It certainly does not contain a red K_{2} and cannot possibly contain a blue K_{b} as we have $b-1$ vertices, so $R\left(K_{2}, K_{b}\right)>b-1$.

Next, suppose that the edges of K_{b} are 2-colored in some fashion. If any of the edges are red, then K_{b} will contain a red K_{2}. If none of the edges are red, then we are left with a blue K_{b}. So $R\left(K_{2}, K_{b}\right) \leq b$. Thus, we can conclude that $R\left(K_{2}, K_{b}\right)=b$ for all $b \geq 2$.

Theorem 8. $R\left(K_{3}, K_{3}\right)=6$.
Proof Consider any 2 -coloring on K_{6}. Let the vertices be v, x, y, z, a, b. Choose some vertex v from the graph. Because there are 5 edges incident to v, by the pigeon hole principle, at least three of these edges must be the same color. We will call them (v, x), (v, y) and (v, z), and we assume they are all red. If at least one of the edges out of (x, y), (x, z), or (y, z) is red, then we have a red K_{3}. If none of these is red, then we have a blue K_{3}. For example, If (x, y) is red, $(v, x),(v, y)$ and (x, y) form a red K_{3}. If none of the edges out of $(x, y),(x, z)$ or (y, z) are red, that means they are all blue and they form a blue K_{3}. Thus, $R\left(K_{3}, K_{3}\right) \leq 6$.
Next, consider the 2-coloring on K_{5} coloring a C_{5} by red and the other C_{5} (that is the complement of first C_{5})by blue. This coloring does not contain a monochromatic K_{3} in either red or blue, so we know that $R\left(K_{3}, K_{3}\right)>5$. Thus, $R\left(K_{3}, K_{3}\right)=6$.

Theorem 9. The Ramsey numbers are monotone.
Proof Let $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$ then if n is large enough to guarantee the existence of either a red $K_{a_{1}}$ or an blue $K_{b_{1}}$ then n also guarantees the existence of a red $K_{a_{2}}$ or an blue $K_{b_{2}}$, as $K_{a_{2}}$ is a subgraph of $K_{a_{1}}$ and $K_{b_{2}}$ is a subgraph of $K_{b_{1}}$. But If we consider the other side, then existence of $K_{a_{2}}$ does not guarantee existence of $K_{a_{1}}$ and existence of $K_{b_{2}}$ does not guarantee existence of $K_{b_{1}}$. Hence $R\left(K_{a_{1}}, K_{b_{1}}\right) \geq R\left(K_{a_{2}}, K_{b_{2}}\right)$.

2.3. Some basic results for Ramsey numbers

Theorem 10. For all natural numbers $a, b, R\left(K_{a}, K_{b}\right)$ always exists and is always finite. If $a \geq 2$ and $b \geq 2$, then $R\left(K_{a}, K_{b}\right) \leq R\left(K_{a-1}, K_{b}\right)+R\left(K_{a}, K_{b-1}\right)$.

Proof We will proceed by induction on $a+b$.
First we consider the base case in which $a+b=2$. The only way this can be true is if $a=b=1$, and it is clear that $R(1,1)=1$. Now we assume that the theorem holds whenever $a+b<N$, for some positive integer N. Let P and Q be integers such that $P+Q=N$. Then $P+Q-1<N$, so by our assumption we know that $R(P-1, Q)$ and $R(P, Q-1)$ exists i.e. both terms are finite.

Consider a complete graph on $R(P-1, Q)+R(P, Q-1)$ vertices.

- Pick a vertex v from the graph, and partition the remaining vertices into two sets M and N, such that for every vertex w, w is in M if (v, w) pair is blue, and w is in N if (v, w) is red.
- Because the graph has $R(P-1, Q)+R(P, Q-1)=|M|+|N|+1$ vertices,By symmetry, it follows that either

$$
|M| \geq R(P-1, Q) \text { or }|N| \geq R(P, Q-1)
$$

In the former case, if M has a red K_{Q} then so does the original graph and we are finished. Otherwise M has a blue K_{P-1} and so $M \cup\{v\}$ has blue K_{P} by definition of M. In the latter case, if N has a blue K_{P} then so does the original graph and we are finished. Otherwise N has a red K_{Q-1} and so $N \cup\{v\}$ has red K_{q} by definition of N.

Theorem 11. For natural numbers a and b,

$$
\begin{equation*}
R\left(K_{a}, K_{a}\right)>2^{\left(\frac{a-1}{2}\right)} \tag{2.2}
\end{equation*}
$$

Proof The proof uses probabilistic analysis that was originally devised by Paul Erdós. We want some n (ideally as large as possible) so that we can somehow colour the edges of K_{n} using two colors (say red and blue) in such a way that we get neither a red K_{a} or a blue K_{a}. He then developed a non-constructive method of choosing a very large n satisfying the constraints.

Let n be the number of vertices of graph G. Then the total number of distinct K_{a} possible is $\binom{n}{a}$. Each K_{a} has exactly $\binom{a}{2}$ edges. Each edge can be either of color 1 or
color 2 with equal probability. So probability of a particular K_{a} of color 1 is $\left(\frac{1}{2}\right)^{\binom{a}{2}}$. So probability that a particular K_{a} of either color 1 or color 2 exists is $2 \cdot 2^{-\binom{a}{2}}=2^{1-\binom{a}{2}}$. So probalility p of any monochromatic $K_{a}=\binom{n}{a} \cdot 2^{1-\binom{a}{2}}$.

Our objective is to choose as large n as possible with $p<1$. So choosing $n=2^{\left(\frac{a-1}{2}\right)}$, we get

$$
\begin{aligned}
p & =\binom{n}{a} \cdot 2^{1-\binom{a}{2}} \\
& \leq \frac{n^{a}}{a!} \cdot 2^{1-\binom{a}{2}} \\
& <2^{a\left(\frac{a-1}{2}\right)} \cdot 2^{-\binom{a}{2}} \\
& =1 .
\end{aligned}
$$

As the probability p is strictly less than 1 , it guarantees our requirement and thus gives a lower bound.

Extension to Hypergraphs:

For any integers m and c, and any integers n_{1}, \ldots, n_{c}, there is an integer $R\left(n_{1}, \ldots, n_{c}\right.$; $c, m)$ such that if the hyperedges of a complete m-hypergraph of order $R\left(n_{1}, \ldots, n_{c} ; c, m\right)$ are coloured with c different colours, then for some i between 1 and c, the hypergraph must contain a complete sub- m-hypergraph of order n_{i} whose hyperedges are all colour i. There are only few results available for multicolor hypergraph Ramsey numbers, most significant one is that $R(3,3,3)=17$.

Ramsey theorem though just focuses on complete substructure, in hind sight, it also generates prospect of existence of other substructures within large superstructures. This gives motivation to look for bipartite and multipartite subgraphs, which is the center of attention of the thesis.

2.4 Definition of $R\left(K_{a, b}, K_{a, b}\right), R\left(K_{a, b}, K_{c, d}\right)$ and $R^{\prime}(a, b, c)$ and previous work

$R\left(K_{a, b}, K_{a, b}\right)$ as the minimum number n of vertices so that any n-vertex simple undirected graph G or its complement G^{\prime} must contain the complete bipartite graph $K_{a, b}$.

Chvátal and Harary [3] were the first to show that $R\left(C_{4}, C_{4}\right)=6$. As $K_{2,2}$ is identical to $C_{4}, R\left(K_{2,2}, K_{2,2}\right)=6$. Some similar results are $R\left(K_{2,3}, K_{2,3}\right)=10[1], R\left(K_{2,4}, K_{2,4}\right)=14$ [7], and $R\left(K_{2,5}, K_{2,5}\right)=18$ [7]. Lortz and Mengersen [9] conjectured that $R\left(K_{2, b}, K_{2, b}\right) \geq$ $4 b-3$, for all $b \geq 2$. Exoo et al. [7] proved that $R\left(K_{2, b}, K_{2, b}\right) \leq 4 b-2$ for all $b \geq 2$, where the equality holds if and only if a strongly regular ($4 b-3,2 b-2, b-2, b-1$)graph exists. There are many such results for $R\left(K_{a, b}, K_{a, b}\right)$ for various values of a and b in [12].
$R\left(K_{a, b}, K_{c, d}\right)$ be the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain a $K_{c, d}$. Harary proved that $R\left(K_{1, n}, K_{1, m}\right)=n+m-x$, where $x=1$ if both n and m are even and $x=0$ otherwise [8]. H. Harborth and I. Mengersen proved that $R\left(K_{1,3}, K_{m, n}\right)=m+n+2$ for $m, n \geq 1$ [16]. Chen et. al. showed that $R\left(K_{1, n+1} K_{2,2}\right) \leq R\left(K_{1, n+} K_{2,2}\right)+2[17] . R\left(K_{2, n-1}, K_{2, n}\right) \leq$ $4 n-4$ for all $n \geq 3$, with the equality if there exists a symmetric Hadamard matrix of order $4 n-4$. There are only 4 cases in which the equality does not hold for $3 \leq n \leq 58$, namely $30,40,44$ and 48[18].

We define $R^{\prime}(a, b, c)$ be the minimum number n such that any n-vertex 3-uniform hypergraph $G(V, E)$, or its complement $G^{\prime}\left(V, E^{c}\right)$ contains a $K_{a, b, c}$. Here, $K_{a, b, c}$ is defined as the complete tripartite 3-uniform hypergraph with vertex set $A \cup B \cup C$, where the A, B and C have a, b and c vertices respectively, and $K_{a, b, c}$ has $a b c$ 3-uniform hyperedges $\{u, v, w\}, u \in A, v \in B$ and $w \in C$. There are no known results to this problem to the best our knowledge.

Chapter 3

The unbalanced diagonal case :
 $R\left(K_{a, b}, K_{a, b}\right)$

It follows from the definition that for positive integers a and $b, R\left(K_{a, b}, K_{a, b}\right)=R\left(K_{b, a}\right.$, $\left.K_{b, a}\right)$. From the definition of $R\left(K_{a, b}, K_{a, b}\right)$, it is clear that $R\left(K_{1,1}, K_{1,1}\right)=2$ and $R\left(K_{1,2}\right.$, $\left.K_{1,2}\right)=3$. To show that $R\left(K_{1,3}, K_{1,3}\right) \geq 6$, observe that we need at least 4 vertices and neither a 4 -cycle nor it complement has a $K_{1,3}$. Further, observe that neither a 5 -cycle in K_{5}, nor its complement (also a 5 -cycle) has a $K_{1,3}$. We now prove that $R\left(K_{a, b}, K_{a, b}\right)$ increases monotonically.

Theorem 12. $R\left(K_{a, b}, K_{a, b}\right)$ are monotone, i.e for $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}, R\left(K_{a_{1}, b_{1}}, K_{a_{1}, b_{1}}\right) \geq$ $R\left(K_{a_{2}, b_{2}}, K_{a_{2}, b_{2}}\right)$.

Proof Let $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$ then if n is large enough to guarantee the existence of either a red $K_{a_{1}, b_{1}}$ or an blue $K_{a_{1}, b_{1}}$ then n also guarantees the existence of a red $K_{a_{2}, b_{2}}$ or an blue $K_{a_{2}, b_{2}}$, as $K_{a_{2}, b_{2}}$ is a subgraph of $K_{a_{1}, b_{1}}$. But If we consider the other side, then existence of $K_{a_{2}, b_{2}}$ does not guarantee existence of $K_{a_{1}, b_{1}}$ as the latter is a larger structure than the previous. Hence $R\left(a_{1}, b_{1}\right) \geq R\left(a_{2}, b_{2}\right)$.

Now we prove the exact values of $R\left(K_{1, b}, K_{1, b}\right)$ (This result was originally given by Burr and Roberts [2], but the analysis below is entirely independent).

Figure 3.1: (a) pigeonhole explanation (b) $b-1=2 m$ for $b=5$ (c) $b-1=2 m+1$ for $b=6$

3.1 $R\left(K_{1, b}, K_{1, b}\right)=2 b$, if b is odd and $2 b$-1 if b is even

Theorem 13. $2 b-1 \leq R\left(K_{1, b}, K_{1, b}\right) \leq 2 b$.
Proof $R\left(K_{1, b}, K_{1, b}\right) \leq 2 b: n=2 b$ vertices:
for any vertex x, there are exactly $2 b-1$ possible neighbours, so by pigeon hole principle, x must contain b neighbours in atleast one of G or G^{\prime}. Those b neighbours combined with x forms the $K_{1, b}$.

$$
R\left(K_{1, b}, K_{1, b}\right) \geq 2 b-1: n=2 b-2(\text { i.e }<2 b-1) \text { vertices: }
$$

To show that $R\left(K_{1, b}, K_{1, b}\right) \geq 2 b-1$, we need to give a general construction with $2 b-2$ vertices graphs G and G^{\prime} free from $K_{1, b}$. So our construction would generate a graph G that is $(b-1)$-regular(that will be obviously free from $K_{1, b}$), such that the number of possible neighbours for any vertex in G^{\prime} cannot exceed $b-1$.

Construction of G : If $b-1=2 m$ is even, put all the vertices around a circle, and join each to its m nearest neighbors on either side.If $b-1=2 m+1$ is odd (and as $n=2 b-2$ is even), put the vertices on a circle, join each to its m nearest neighbors on each side, and also to the vertex directly opposite. The entire construction is illustrated for specific values in Figure 3.1. This will result in a $(b-1)$-regular graph G such that G and its complement G^{\prime} are free from $K_{1, b}$.

Theorem 14. $R\left(K_{1, b}, K_{1, b}\right)=2 b$, if b is odd.
Proof To proof this, all we need to show is with $n=2 b-1$ vertices, there exists a graph G such that both G and its complement G^{\prime} are free from $K_{1, b}$. As b is odd, $b-1$

Figure 3.2: G and G^{\prime} with $n=4$ and $n=5$ without a $K_{2,2}$
is even. If $b-1=2 m$, put all the vertices around a circle, and join each to its m nearest neighbors on either side to construct G that is a $(b-1)$-regular graph, hence free from $K_{1, b}$. As a result, the number of possible neighbours for any vertex in G^{\prime} is exactly $b-1$, hence G^{\prime} is also free from $K_{1, b}$.

Theorem 15. $R\left(K_{1, b}, K_{1, b}\right)=2 b-1$, if b is even.
Proof To proof this, we will show that any graph G or its complement G^{\prime} with $2 b-1$ vertices will always contain $K_{1, b}$. Any vertex with degree b means that there exist some $K_{1, b}$. Hence to avoid $K_{1, b}$, the degree of any vertex cannot exceed $b-1$. Again if some vertex has degree $b-2$ in G, then that means the vertex has $2 b-2-(b-2)=b$ neighbours in G^{\prime}, which introduces the $K_{1, b}$. Hence to avoid $K_{1, b}$ in both G and G^{\prime}, the only possible solution is that both G and G^{\prime} are $(b-1)$-regular.

As b is even, $b-1$ is odd and hence it is impossible to construct a $(b-1)$-regular graph with $2 b-1$ verices(this is clear from the degree sum formula which proves that the sum of degrees of vertices of any graph is always even and is equal to $2 e$, where e is total number of edges in the graph and as both $b-1$ and $2 b-1$ are odd, the degree sum $(b-1)(2 b-1)$ is also odd).

This means that there always exist atleast one vertex with degree less than or greater than $b-1$ in $G . G^{\prime}$ has the $K_{1, b}$ in the first case where as G has the $K_{1, b}$ in the latter.

3.2 Lower bounds for $R\left(K_{2, b}, K_{2, b}\right)$ for small values of b

Theorem 16. $R\left(K_{2,2}, K_{2,2}\right)>5$
Proof By Counter Example: To establish the bound, we show graphs with $n=4$ and n $=5$ free from $K_{2,2}$ in 3.2 .

Theorem 17. $R\left(K_{2,2}, K_{2,2}\right)=6$.
Proof Let us have 6 vertices namely x_{1} through x_{6}. So any vertex say x_{1} has 5 possible neighbours.So by pigeon hole principle, x_{1} has atleast 3 neighbours in either G or G^{\prime}. Without loss of generality we assume that the graph in which x_{1} has 3 neighbours is G. Let its neighbours be x_{2}, x_{3}, x_{4}. For x_{5} and x_{6}, there are two possibilities.
Case 1: atleast one of x_{5}, x_{6} has >3 neighbours in G.
Let that vertex be x_{5}. As x_{5} has >3 neighbours, it has atleast two neighbours in the neighbour set $\left\{x_{2}, x_{3}, x_{4}\right\}$ of x_{1}. And hence $\left\{x_{1}, x_{2}\right\}$ form one partite set and their common neighbours form the other partite set to give a $K_{2,2}$.
Case 2: both x_{5}, x_{6} has ≤ 2 neighbours in G.
Case 2.1: x_{5}, x_{6} are non-neighbours and atleast one of them has two neighbours.
In this case, the vertex with two neighbours combined with x_{1} forms one partite set and their common neighbours form the other partite set.
Case 2.2: x_{5}, x_{6} are neighbours and atleast one of them has two neighbours.
In this case, there is atleast 1 vertex from the set $\left\{x_{2}, x_{3}, x_{4}\right\}$ which is not a neighbour of both x_{5} and x_{6}. Let that vertex be x_{3}. In the complement graph, x_{5} and x_{6} form one partite set and x_{1} and x_{3} form the other partite set to give a $K_{2,2}$.
Case 2.3: both x_{5} and x_{6} have <2 neighbours.
As there are 5 possible neighbours for both x_{5} and x_{6}, and as both x_{5} and x_{6} has less than or equal to 1 neighbours in G, they must have atleast 3 common neighbours in G^{\prime}, thus forming a $K_{2,2}$ with x_{5}, x_{6} as one partite set and their common neighbours form the other partite set.

As $K_{2,2}$ is also a C_{4}, this result implies that with number of vertices greater than equal to 6 , we are guaranteed to find a C_{4} (i.e. $K_{2,2}$) in either G or complement of G.

Theorem 18. $R\left(K_{2,3}, K_{2,3}\right)>7$.
Proof By Counter Example:
To establish the bound, we show graphs with $n=7$ free from $K_{2,3}$ in 3.3.
Theorem 19. $R\left(K_{2,4}, K_{2,4}\right)>9$.
Proof By Counter Example:
To establish the bound, we show graphs with $n=9$ free from $K_{2,4}$ in 3.4 .

Figure 3.3: G and G^{\prime} with $n=7$ without a $K_{2,3}$

Figure 3.4: G and G^{\prime} with $n=9$ without a $K_{2,4}$

Figure 3.5: Construction of G (left two): generation of B_{1}, B_{2} and addition of edges. Resulting G^{\prime} (rightmost): In G^{\prime}, B_{1} and B_{2} become K_{b}, and B_{1} and B_{2} have a perfect matching.

These counter examples can be generated by brute force technique and the code for generating a counterexample for $R\left(K_{2,3}, K_{2,3}\right)>7$ is attached in the Appendix B. 1.

The exact values for the above numbers are known and are given in [12].

3.3 A constructive lower bound for $R\left(K_{2, b}, K_{2, b}\right)$

The following lower bound for $R\left(K_{2, b}, K_{2, b}\right)$ involves an explicit construction as follows.
Theorem 20. $R\left(K_{2, b}, K_{2, b}\right)>2 b+1$, for all integers $b \geq 2$.
Proof For $b \geq 2$, we show that with $2 b+1$ vertices, there always exist a graph G such that both G and its complement G^{\prime} do not contain $K_{2, b}$. The entire construction is illustrated in Figure 3.3. Let the vertices be labelled $v_{1}, v_{2}, \ldots, v_{2 b+1}$. Connect $v_{2 b+1}$ to every other vertex. In order to avoid $K_{2, b}$, no other vertex out of $v_{1}, v_{2}, \ldots, v_{2 b}$ should be connected to b or more vertices in the set $v_{1}, v_{2}, \ldots, v_{2 b}$. So, any of these $2 b$ vertices can have a maximum of $b-1$ neighbours other than $v_{2 b+1}$. We distribute these $2 b$ vertices into two groups, keeping $v_{1}, v_{2}, \ldots, v_{b}$ in one group B_{1}, and $v_{b}+1, v_{b}+2, \ldots, v_{2 b}$ in the other group B_{2}. Now every vertex from B_{1} can be connected to at most $b-1$ vertices from B_{2} such that we can still avoid $K_{2, b}$. There are $\binom{b}{b-1}=b$ such distinct groups of size $b-1$ in B_{2}. Now each vertex of B_{1} is connected to one such distinct group of size

Figure 3.6: G and G^{\prime} with $n=11$ without a $K_{3,3}$
$b-1$ from B_{2}. We claim the degree of every vertex except $v_{2 b+1}$ is b. Firstly, every vertex of B_{1} is connected to $b-1$ vertices of B_{2}, and the single vertex $v_{2 b+1}$. Secondly, every vertex of B_{2} (i) is connected to $v_{2 b+1}$, and (ii) also present in exactly $b-1$ separate groups, where each group is connected to exactly one vertex of B_{1}. So, every vertex of $B_{1} \cup B_{2}$ has degree b. Therefore G is $K_{2, b}$-free.

Now Consider G^{\prime}. Since $v_{2 b+1}$ is connected to every other vertex in G, it is isolated in G^{\prime}. So, the number of possible neighbours for vertices $v_{1}, v_{2}, \ldots, v_{2 b+1}$ becomes $2 b-1$. Since each vertex in G is connected to $b-1$ vertices other than $v_{2 b+1}$, the number of possible neighbours for each vertex is restricted to $(2 b-1)-(b-1)=b$, as illustrated in Figure 3.3. Now we argue that such neighbouring sets of b vertices of any two vertices differ in at least one vertex. Observe that in G^{\prime}, B_{1} and B_{2} include complete graphs K_{b}, and the edges between B_{1} and B_{2} form a perfect matching. This is because the neighbouring sets of any two vertices differ by at least one vertex in G. Since the number of common neighbours between any two vertices is no more than $b-1, G^{\prime}$ is also $K_{2, b}$-free.

Now we present the following lower bound for $a=b=3$, i.e $R\left(K_{3,3}, K_{3,3}\right)$.
Theorem 21. $R\left(K_{3,3}, K_{3,3}\right)>11$.
Proof By Counter Example To establish the bound, we show graphs with $n=11$ free from $K_{3,3}$ in 3.6 .

Table 3.1: Lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$ from Inequality 3.1 left), Theorem 22 (middle) and Theorem 24 (right)

b	3	4	5	6	7	8	14	15	16
a									
1	$2,3,3$	$2,3,4$	$3,4,5$	$3,5,6$	$3,5,7$	$3,6,8$	$5,10,17$	$5,11,18$	$6,12,19$
2	$3,4,4$	$3,5,6$	$4,6,7$	$5,7,9$	$5,8,10$	$6,9,12$	$9,17,23$	$10,18,24$	$10,19,26$
3	$4,5,6$	$5,7,8$	$6,8,9$	$7,10,12$	$8,12,14$	$9,14,16$	$16,26,32$	$17,29,35$	$18,31,37$
4		$6,9,10$	$8,11,12$	$10,14,15$	$12,16,18$	$14,19,22$	$26,41,46$	$28,45,50$	$30,49,55$
5			$11,14,16$	$13,18,20$	$16,22,24$	$19,27,29$	$40,60,65$	$43,67,72$	$47,74,80$
6				$17,23,25$	$21,29,31$	$26,35,38$	$59,87,93$	$66,98,104$	$72,109,116$
7					$27,37,39$	$34,46,48$	$86,123,129$	$96,139,147$	$106,156,165$
8						$43,58,61$	$119,168,178$	$136,193,204$	$152,219,232$
14							$556,755,820$	$678,922,1005$	$817,1113,1219$
15								$836,1136,1246$	$1019,1385,1525$
16									$1254,1704,1886$

3.4 Probabilistic lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$

Probabilistic analysis for existence of structures was devised by Paul Erdós for lower bounding the original Ramsey numbers. He suggested that to get a lower bound for the Ramsey number $R(a, b)$, we want some (ideally as large as possible) n so that we can somehow colour the edges of K_{n} using two colors (say red and blue) in such a way that we get neither a red K_{a} or a blue K_{b}. He emphasized that we don't actually need to see an example of such a colouring, we just need to know that one exists. He then developed a non-constructive method of choosing a very large n satisfying the constraints by a method that is now referred to as the Probabilistic method(refer to [6] for the exact analysis of Erdős).

In the first Section 3.4.1 we use the probabilistic method to prove lower bounds on $R\left(K_{a, b}, K_{a, b}\right)$ that is a improvement over existing results. In the Section 3.4.2, we demonstrate even more improved lower bounds using the Lovász' local lemma.

3.4.1 Application of the probabilistic method

The best known lower bound on $R\left(K_{a, b}, K_{a, b}\right)$ due to Chung and Graham [4] is

$$
\begin{equation*}
R\left(K_{a, b}, K_{a, b}\right)>(2 \pi \sqrt{a b})^{\left(\frac{1}{a+b}\right)} \cdot\left(\frac{a+b}{e^{2}}\right) \cdot 2^{\frac{a b-1}{a+b}} \tag{3.1}
\end{equation*}
$$

We derive a tighter lower bound using the probabilistic method as follows.

Theorem 22. For natural numbers a and b,

$$
\begin{equation*}
R\left(K_{a, b}, K_{a, b}\right)>2\left(\frac{a b-1}{a+b}\right) \tag{3.2}
\end{equation*}
$$

Proof Let n be the number of vertices of graph G. Then the total number of distinct $K_{a, b}$ possible is

$$
\binom{n}{a} \cdot\binom{n-a}{b}
$$

Each $K_{a, b}$ has exactly $a b$ edges. Each edge can be either of color 1 or color 2 with equal probability. So probability of a particular $K_{a, b}$ of color 1 is $\left(\frac{1}{2}\right)^{a b}$. So probability that a particular $K_{a, b}$ of either color 1 or color 2 exists is

$$
\begin{equation*}
2 \cdot\left(\frac{1}{2}\right)^{a b}=2^{1-a b} \tag{3.3}
\end{equation*}
$$

So probalility p of any monochromatic $K_{a, b}=$

$$
\begin{equation*}
\binom{n}{a} \cdot\binom{n-a}{b} \cdot 2^{1-a b} . \tag{3.4}
\end{equation*}
$$

Our objective is to choose as large n as possible with $p<1$. So choosing $n=2\left(\frac{a b-1}{a+b}\right)$, we get,

$$
\begin{aligned}
p & =\binom{n}{a} \cdot\binom{n-a}{b} \cdot 2^{1-a b} \\
& \leq \frac{n^{a}}{a!} \cdot \frac{(n-a)^{b}}{b!} \cdot 2^{1-a b} \\
& <n^{a} \cdot n^{b} \cdot 2^{1-a b} \\
& =n^{(a+b)} \cdot 2^{1-a b} \\
& =2^{\left(\frac{a b-1}{a+b}\right) \cdot(a+b)} \cdot 2^{1-a b} \\
& =1 .
\end{aligned}
$$

3.4. Probabilistic lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$

As the probability p is strictly less than 1 , it guarantees our requirement and thus gives a lower bound.
Improvement In the earlier proof of lower bound, we neglected a ! and b ! from the denominator. If however we consider those terms we get a bound that is slightly better than the earlier bound. The Stirling's approximation gives a lower bound on a !.

$$
\begin{equation*}
a!\geq \sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}} \text { (Stirling's approximation) } \tag{3.5}
\end{equation*}
$$

Theorem 23. $R\left(K_{a, b}, K_{a, b}\right)>\frac{(2 \pi)^{\left(\frac{1}{a+b}\right)} \cdot a^{\left(\frac{a+\frac{1}{2}}{a+b}\right)} \cdot b^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} \cdot 2^{\left(\frac{a b-1}{a+b}\right)}$
Proof Rewriting the expression for p from 3.4 .

$$
\begin{aligned}
p & =\binom{n}{a} \cdot\binom{n-a}{b} \cdot 2^{1-a b} \\
& \leq \frac{n^{a}}{a!} \cdot \frac{(n-a)^{b}}{b!} \cdot 2^{1-a b} \\
& <\frac{n^{a}}{a!} \cdot \frac{n^{b}}{b!} \cdot 2^{1-a b} \\
& <\frac{n^{a+b}}{a!b!} \cdot 2^{1-a b}
\end{aligned}
$$

Now choosing $n=\frac{2 \pi\left(\frac{1}{a+b}\right)_{a} \cdot\left(\frac{a+\frac{1}{2}}{a+b}\right) \cdot b\left(\frac{b+\frac{1}{2}}{a+b}\right)}{e} \cdot 2^{\left(\frac{a b-1}{a+b}\right)}$ and replacing $a!$ by $\sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}}$ and
$b!$ by $\sqrt{2 \pi} \frac{b^{b+\frac{1}{2}}}{e^{b}}$ as per 3.5. we get,

$$
\begin{align*}
p & <\frac{n^{a+b}}{a!b!} \cdot 2^{1-a b} \\
& \leq \frac{n^{a+b}}{\left(\sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}}\right) \cdot\left(\sqrt{2 \pi} \frac{b^{b+\frac{1}{2}}}{e^{b}}\right)} \cdot 2^{1-a b} \\
& =\frac{\left(\frac{2 \pi\left(\frac{1}{a+b}\right) \cdot a\left(\frac{a+\frac{1}{2}}{a+b}\right)_{\cdot b}\left(\frac{b+\frac{1}{2}}{a+b}\right)}{e} \cdot 2^{\left.\left(\frac{a b-1}{a+b}\right)\right)^{a+b}}\right.}{\left(\sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}}\right) \cdot\left(\sqrt{2 \pi} \frac{b^{b+\frac{1}{2}}}{e^{b}}\right)} \cdot 2^{1-a b} \\
& =1 . \tag{3.6}
\end{align*}
$$

As the probability p is strictly less than 1 , it guarantees our requirement and thus gives a lower bound.

See Table 3.1 for the first two lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$ for each pair (a, b), due to Inequality 3.1 and Theorem 23, respectively. If we take the ratio of our lower bound and Graham's lower bound(say x), from Theorem 23 by Inequality 3.1, we get

$$
\begin{align*}
x & =\frac{\left.\frac{2 \pi^{\left(\frac{1}{a+b}\right) \cdot a}\left(\frac{a+\frac{1}{2}}{a+b}\right)}{e}\right)^{\left(\frac{b+\frac{1}{2}}{a+b}\right)}}{e} \cdot 2^{\left(\frac{a b-1}{a+b}\right)} \\
=>x & =\frac{\left.a^{\left(\frac{a}{a+b}\right)} \cdot b^{\left(\frac{1}{a+b}\right) \cdot a^{\left(\frac{1}{a+b}\right)}} e^{2 \cdot a+b}\right) \cdot b\left(\frac{1}{2 \cdot(a+b)}\right)}{a+b} \cdot(a+b) \cdot 2^{\left(\frac{a b-1}{a+b}\right)} \tag{3.7}
\end{align*}
$$

When $a=b$, from 3.7, we get

$$
\begin{equation*}
x=\frac{a}{2 a} \cdot e=\frac{e}{2} \approx 1.359 . \tag{3.8}
\end{equation*}
$$

When $a \ll b$, as $a+b \approx b$, from 3.7, we get

$$
\begin{equation*}
x=\frac{b}{b} \cdot e \approx e \tag{3.9}
\end{equation*}
$$

3.4. Probabilistic lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$

So our lower bound gives an improvement that varies between 1.35 to Euler Constant e depending upon the values of a and b.

3.4.2 A lower bound for $R\left(K_{a, b}, K_{a, b}\right)$ using Lovász' local lemma

We are interested in the question of existence of a monochromatic $K_{a, b}$ in any bicolouring of the edges of K_{n}. Since the same edge may be present in many distinct $K_{a, b}$'s, the colouring of any particular edge may effect the monochromaticity in many $K_{a, b}$'s. This gives the motivation of use of Lovász' local lemma (see [11]) in this context.

Definition 2. A directed dependency graph is a graph $G(V, E)$ where vertices are the events of a probability space. A directed edge between two vertices v_{1} and v_{2} indicates v_{2} is dependent on v_{1}.

Lemma 3. Lovász Local Lemma

Let $G(V, E)$ be a dependency graph for events $E_{1}, \ldots E_{n}$ in a probability space. Suppose that there exists $x_{i} \in[0,1]$ for $1 \leq i \leq n$ such that $\operatorname{Pr}\left[E_{i}\right] \leq x_{i} \prod_{\{i, j\} \in E}\left(1-x_{j}\right)$ then $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{j}\right)$.

A direct corollary of the lemma states
Corollary 1. If every event $E_{i}, 1 \leq i \leq m$ is dependent on at most d other events and $\operatorname{Pr}\left[E_{i}\right] \leq p$, and if ep $(d+1) \leq 1$, then $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{E_{i}}\right]>0$.

Theorem 24. If e $\cdot 2^{1-a b} \cdot\left(a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1, R\left(K_{a, b}, K_{a, b}\right)>n$
Proof We consider a random bicolouring of the complete graph K_{n} in which each edge is independently coloured red or blue with equal probability. Let S be the set of edges of an arbitrary $K_{a, b}$, and let E_{S} be the event that all edges in this $K_{a, b}$ are coloured monochromatically. For each such S, the probability of E_{S} is $P\left(E_{S}\right)=2^{1-a b}$. We enumerate the sets of edges of all possible $K_{a, b}$'s as $S_{1}, S_{2}, \ldots, S_{m}$, where $m=\binom{n}{a}\binom{n-a}{b}$. Clearly, each event $E_{S_{i}}$ is mutually independent of all the events $E_{S_{j}}$ from the set

$$
\begin{equation*}
\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right|=0\right\} \tag{3.10}
\end{equation*}
$$

since for any such S_{j}, S_{i} and S_{j} share no edges. For each $E_{S_{i}}$, the number of events
outside this set satisfies the inequality

$$
\begin{equation*}
\left|\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right| \geq 1\right\}\right| \leq a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} \tag{3.11}
\end{equation*}
$$

as every S_{j} in this set shares at least one edge with S_{i}, and therefore such an S_{j} shares at least two vertices with S_{i}. We can choose the rest of the $a+b-2$ vertices of S_{j} from the remaining $n-2$ vertices of K_{n}, out of which we can choose $b-1$ for one partite of S_{j}, and the remaining $a-1$ to form the second partite of S_{j}, yielding a $K_{a, b}$ that shares at least one edge with S_{i}. We apply Corollary 1 to the set of events $E_{S_{1}}, E_{S_{2}}, \ldots, E_{S_{m}}$, with

$$
\begin{equation*}
p=2^{1-a b}, d=a b\binom{n-2}{a+b-2}\binom{a+b-2}{b-1} \tag{3.12}
\end{equation*}
$$

yields

$$
\begin{equation*}
e \cdot 2^{1-a b} \cdot\left(a b\binom{n}{a+b-2}\binom{a+b-2}{b-1}+1\right) \leq 1=>\operatorname{Pr}\left[\bigcap_{i=1}^{m} \bar{E}_{S_{i}}\right]>0 \tag{3.13}
\end{equation*}
$$

This non-zero probability (of none of the events $E_{S_{i}}$ occuring, for $1 \leq i \leq m$) implies the existence of some bicolouring of the edges of K_{n} with no monochromatic $K_{a, b}$, thereby establishing the theorem.

Solving the inequality in the statement of Theorem 24, we can compute lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$, for natural numbers a and b. Such lower bounds for some larger values of a and b show significant improvements over the bounds computed using Theorem 22(see Table 3.1).

Chapter 4

The unbalanced off-diagonal case:
 $R\left(K_{a, b}, K_{c, d}\right)$

$R\left(K_{a, b}, K_{c, d}\right)$ is the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, b}$ or its complement G^{\prime} must contain the complete bipartite graph $K_{c, d}$. Equivalently, $R\left(K_{a, b}, K_{c, d}\right)$ is the minimum number n such that any 2-coloring of the edges of an n-vertex complete undirected graph would contain a monochromatic $K_{a, b}$ or a monochromatic $K_{c, d}$.

4.1 A constructive lower bound for $R\left(K_{2, b}, K_{2, d}\right)$

Now we present a constructive lower bound as follows by designing an explicit construction.

Theorem 25. $R\left(K_{2, b}, K_{2, d}\right)>b+d+1$, for all integers $d \geq b \geq 2$.
Proof For $d \geq b \geq 2$, we demonstrate the existence of a $K_{2, b}$-free graph with $b+d+1$ vertices, such that its complement graph does not contain any $K_{2, d}$. The construction is illustrated for specific values of b and d in Figure 4.1. We have the following three exhaustive cases.

Case 1:

If $b=2 m$ for an integer m, then arrange all the vertices around a circle, numbering vertices as $v_{0}, v_{1}, v_{2}, \ldots, v_{b+d}$, and connect each vertex to its m nearest neighbours in

Figure 4.1: (i) $R\left(K_{2,4}, K_{2,6}\right)>11$: (a) graph G_{1} is $K_{2,4}$-free, and and (b) graph G_{1}^{\prime} is $K_{2,6}-$ free, (ii) $R\left(K_{2,3}, K_{2,4}\right)>8$: (c) graph G_{2} is $K_{2,3}$-free, and and (d) graph G_{2}^{\prime} is $K_{2,4}$-free, (iii) $R\left(K_{2,3}, K_{2,5}\right)>9$: (e) graph G_{3} is $K_{2,3}$-free, and (f) graph G_{3}^{\prime} is $K_{2,5}$-free.
4.1. A constructive lower bound for $R\left(K_{2, b}, K_{2, d}\right)$
clockwise (as well as counterclockwise) directions along the circle. See graph G_{1} in Figure 4.1(a) for an example with $b=4$ and $d=6$. Observe that the constructed graph G is b-regular, and its complement graph is therefore d-regular. We claim that G does not have a $K_{2, b}$ since no two vertices in G share more than $b-2$ neighbours.

We first show that for all $i, 0 \leq i \leq b+d$, the vertex v_{i} shares exactly $2(m-1)=$ $b-2$ neighbours with v_{i+1}. Here and henceforth, all arithmetic operations on indices of vertices are modulo $b+d+1$. There are exactly $m-1$ neighbours common to v_{i} and v_{i+1} in the clockwise (respectively, counterclockwise) direction of $v_{i}\left(v_{i+1}\right)$, resulting in a total of $2(m-1)$ common vertices. Similarly, the number of vertices shared by v_{i} with its neighbouring clockwise vertex v_{i-1} is also $b-2$. Now consider the remaining counterclockwise neighbours v_{i+k} of v_{i} in $G, 2 \leq k \leq m$. Observe that vertices v_{i} and v_{i+k} share exactly $2(m-k)+(k-1)=2 m-k-1=b-k-1$ neighbours; $m-k$ vertices clockwise (respectively, counterclockwise) of v_{i} (respectively, v_{i+k}), and $k-1$ vertices clockwise of v_{i+1} and counterclockwise of v_{i}. So, the total number of shared neighbours between v_{i} and v_{i+k} (and symmetrically, between v_{i} and v_{i-k}), is certainly no more than $2(m-1)=b-2$. For the d non-adjacent vertices v_{j} of v_{i}, clearly v_{j} and v_{i} do not share more than $m<b-2$ common neighbours. This implies that the graph G is $K_{2, b}$-free.

Now consider the complement graph G^{\prime} of G. Since we have $b+d+1$ vertices, the complement graph G^{\prime} is d-regular if and only if the graph G is b-regular. See Figure 4.1 (b) for the complement graph G_{1}^{\prime} of G_{1}, for $b=4$ and $d=6$. The complement graph G^{\prime} can have a $K_{2, d}$ only if two vertices share all their neighbours. Each pair of vertices differ in at least two vertices in their neighbourhood in G, since any pair of two vertices can share at most $b-2$ vertices in the b-regular graph G. This ensures that no two vertices can have all neighbours common in G^{\prime}. For any vertex pair $\left(v_{i}, v_{j}\right)$, even if the neighbourhood of v_{i} includes v_{j}, v_{i} still has some neighbour v_{k} that is not a neighbour of v_{j} in G, and (similarly) v_{j} has some neighbour v_{l} that is not a neighbour of v_{i} in G. In G^{\prime} therefore, v_{k} is a neighbour of v_{j} but not a neighbour of v_{i}, and v_{l} is a neighbour of v_{i} but a neighbour of v_{j}. Therefore, G^{\prime} is $K_{2, d}$-free.

Case 2:

If $b=2 m+1$ for an integer m, and $b+d+1$ is even (i.e., d is even), then arrange and name the vertices around a circle as in Case 1, and connect each vertex to its m nearest neighbours in counterclockwise as well as clockwise directions around the circle. Also, connect each vertex v_{i} to the vertex $v_{i+\frac{b+d+1}{2}}$, directly opposite to it on the circle; note
4.1. A constructive lower bound for $R\left(K_{2, b}, K_{2, d}\right)$
that no two vertices share such a common directly opposite neighbour. The resulting graph G is b-regular. As shown in Case 1, this graph G does not have any $K_{2, b}$ as no two vertices share more than $2(m-1)=b-3<b-2$ common neighbours. The complement graph G^{\prime} is again d-regular, as in Case 1. The construction is illustrated for the case of $R\left(K_{2,3}, K_{2,4}\right)$ in Figure 4.1 (c) and (d). The only way G^{\prime} can have a $K_{2, d}$ is if two vertices share all their neighbours in G^{\prime}. Since two vertices G share less than $b-2$ vertices in G, they cannot have all neighbours common in G^{\prime}. This can be shown in a manner similar to that in Case 1. So, G^{\prime} is $K_{2, d}$-free.

Case 3:

If $b=2 m+1$ for some integer m, and $b+d+1$ is odd (i.e., d is odd), then arrange and name the vertices around a circle as in Cases 1 and 2, and connect (i) each vertex to its m nearest neighbours in counterclockwise as well as clockwise directions, and (ii) connect each vertex v_{i} to vertex $v_{i+\left\lfloor\frac{b+d+1}{2}\right\rfloor}$, for all $i, 1 \leq i \leq\left\lfloor\frac{b+d+1}{2}\right\rfloor-1$. This results in a graph G with $b+d$ vertices of degree b and one vertex v_{b+d} of degree $b-1$. Observe that as in Cases 1 and 2, the number of common neighbours for any two vertices in G is no more than $2(m-1)=b-3<b-2$. This graph G is therefore free from any $K_{2, b}$.

We now show that G^{\prime} is $K_{2, d}$ free. Observe that every vertex of the complement graph G^{\prime} has degree d, except v_{b+d} whose degree is $d+1$. The construction is illustrated for the case of $R\left(K_{2,3}, K_{2,5}\right)$ in Figure $4.1(\mathrm{e})$ and (f). The only way G^{\prime} can have a $K_{2, d}$ is (i) if some d-degree vertex shares all its neighbours with some other d-degree vertex in G^{\prime} (as in Cases 1 and 2), or (ii) if any d of the $d+1$ neighbours of the $d+1$-degree vertex v_{b+d}, are shared with a d-degree vertex in G^{\prime}. Two d-degree vertices disagreeing on at least two neighbours cannot yield a $K_{2, d}$, as seen in Cases 1 and 2 . So, we need to consider only the later case involving vertex v_{b+d}, whose degree is $d+1$ in G^{\prime}. Consider a d-degree vertex v_{i} of G^{\prime} and the vertex v_{b+d}. Since these two vertices share at most $b-2$ vertices in G, there is at least one neighbouring vertex v_{j} of v_{b+d} in G, that is not a common neighbour in G for v_{i} and v_{b+d}. So, v_{j} not connected to v_{i} in G and therefore a v_{j} is a neighbour of v_{i} in G^{\prime}. Also, v_{j} is connected to v_{b+d} in G and therefore not a neighbour of v_{b+d} in G^{\prime}. So, G^{\prime} does not have a $K_{2, d}$ where v_{i} and v_{b+d} should share d neighbours.

Now we derive a lower bound on such numbers using probabilistic method.

Theorem 26. For all $n \in N$ and $0<p<1$, if $\binom{n}{a}\binom{n-a}{b} p^{a b}+\binom{n}{c}\binom{n-c}{d}(1-p)^{c d}<1$, then $R\left(K_{a, b}, K_{c, d}\right)>n$.

Proof To proof the above theorem, Lets consider some random bi-colouring Of the complete graph K_{n} with colours red and blue with probabilities p and $(1-p)$ respectively. Then the probability that a particular red $K_{a, b}$ exists is $p^{a b}$, hence the probability that some red $K_{a, b}$ exists is $\binom{n}{a}\binom{n-a}{b} p^{a b}$. Similarly the probability that a particular blue $K_{c, d}$ exists is $(1-p)^{c d}$, hence the probability that some blue $K_{c, d}$ exists is $\binom{n}{c}\binom{n-c}{d}(1-p)^{c d}$. So the probability that the bicoloured K_{n} contains any red $K_{a, b}$ or any blue $K_{c, d}$ is $\binom{n}{a}\binom{n-a}{b} p^{a b}+\binom{n}{c}\binom{n-c}{d}(1-p)^{c d}$, which is assumed to be less than 1 in the premise of Theorem 26. Hence the probability of the complementary event, i.e. there is neither any red $K_{a, b}$ or any blue $K_{c, d}$, is non zero, hence there exist some 2-colouring for which there is neither any red $K_{a, b}$ or any blue $K_{c, d}$ as subgraph.

4.2 A lower bound for $R\left(K_{a, b}, K_{c, d}\right)$ using Lovász' local lemma

We are interested in the question of existence of a monochromatic $K_{a, b}$ or a monochromatic $K_{c, d}$ in any bicolouring of the edges of K_{n}. Since the same edge may be shared by many distinct $K_{a, b}$'s and $K_{c, d}$'s, the colouring of any particular edge may effect the monochromaticity in many $K_{a, b}$'s and $K_{c, d}$'s. This gives the motivation of use of Lovász' local lemma 3 in this context.
Theorem 27. If for some $0<p<1,\left\{a b\binom{n-2}{a-1}\binom{n-a-1}{b-1}+1\right\} p^{a b} e^{1+\frac{a b}{c d}} \leq 1$ and $\left\{c d\binom{n-2}{c-1}\binom{n-c-1}{c-1}+1\right\} e^{-p c d} e^{1+\frac{c d}{a b}} \leq 1$, then $R\left(K_{a, b}, K_{c, d}\right)>n$.

Proof We consider a random bicolouring of the complete graph K_{n} in which each edge is independently coloured red or blue with probabilities p and $(1-p)$ respectively. Let S be the set of edges of an arbitrary $K_{a, b}, T$ be the set of edges of an arbitrary $K_{c, d}$, . let E_{S} be the event that all edges in the $K_{a, b} S$ are coloured monochromatically red and let E_{T} be the event that all edges in the $K_{c, d} T$ are coloured monochromatically blue. For each such S, the probability of E_{S} is $P\left(E_{S}\right)=p^{a b}$. Similarly For each such T, the

Table 4.1: Lower bounds for $R\left(K_{a, b}, K_{c, d}\right)$ from Theorem 26(left) and Theorem 27(right)

c, d	4,5	4,6	5,6	5,7	6,7	6,8	12,13	12,14	13,14	14,15	15,16
a, b											
3,4	9,9	9,10	10,12	11,14	12,16	13,18	24,79	25,89	26,102	28,133	30,173
3,5	12,9	12,10	12,12	12,14	12,17	13,19	24,87	25,99	26,114	28,149	30,196
3,6	14,11	14,12	14,13	14,14	14,17	14,19	24,93	25,106	26,122	28,162	30,213
3,7	15,13	16,14	16,14	16,15	16,17	16,20	24,97	25,111	26,129	28,171	30,227
4,5	14,12	15,12	15,13	15,15	15,17	15,20	24,96	25,109	26,127	28,168	30,222
4,6	15,12	17,15	18,15	18,15	18,17	18,20	24,101	25,115	26,134	28,178	30,237
4,7	15,17	18,18	21,18	22,18	22,18	22,20	24,104	25,119	26,139	28,186	30,248
5,6	15,13	18,15	22,19	23,19	23,20	23,21	24,106	25,121	26,142	28,189	30,253
5,7	15,15	18,15	23,19	27,23	28,24	28,24	28,109	28,125	28,146	28,196	30,262
10,11	20,144	20,150	23,157	28,161	36,166	43,168	188,182	188,183	188,183	188,226	188,306
10,12	21,173	21,181	23,190	28,195	36,200	43,204	226,221	226,221	226,222	226,227	226,307
10,13	22,205	22,215	23,226	28,232	36,239	43,243	269,265	269,265	269,266	269,267	269,309
11,12	22,215	22,226	23,237	28,244	36,251	43,256	283,279	283,280	283,281	283,282	283,309
11,13	23,258	23,272	23,286	28,295	36,303	43,309	341,338	341,339	341,340	341,342	341,343
12,13	24,320	24,338	24,357	28,368	36,380	43,388	415,426	426,427	426,429	426,431	426,432
13,14	26,476	26,504	26,535	28,554	36,573	43,585	426,648	513,650	623,652	639,656	639,659
14,15	28,704	28,750	28,799	28,829	36,859	43,879	426,982	513,985	639,989	935,994	957,999
15,16	30,1038	30,1111	30,1189	30,1236	36,1285	43,1317	426,1482	513,1488	639,1493	957,1502	1399,1509

probability of E_{T} is $P\left(E_{T}\right)=(1-p)^{c d}$. We enumerate the sets of edges of all possible $K_{a, b}$'s and $K_{c, d}$'s as $A_{1}, A_{2}, \ldots, A_{m}$, where $m=\binom{n}{a}\binom{n-a}{b}+\binom{n}{c}\binom{n-c}{d}$. Clearly, each event $E_{A_{i}}$ is mutually independent of all the events $E_{A_{j}}$ from the set $\left\{E_{A_{j}}:\left|A_{i} \cap A_{j}\right|=0\right\}$; since for any such A_{j}, A_{i} and A_{j} share no edges. Now again as the events can be a monochromatic $K_{a, b}$ or $K_{c, d}$, Let $A_{a b}$ denote a $K_{a, b}$ and $A_{c d}$ denote a $K_{c, d}$.

For each $E_{A_{a b}}$, the number of events outside this set satisfies the inequality $\mid\left\{E_{A_{j}}\right.$: $\left.\left|A_{a b} \cap A_{j}\right| \geq 1\right\} \left\lvert\, \leq a b\left\{\binom{n-2}{a-1}\binom{n-a-1}{b-1}+\binom{n-2}{c-1}\binom{n-c-1}{d-1}\right\}\right.$; every A_{j} in this set shares at least one edge with $A_{a b}$, and therefore such an A_{j} shares at least two vertices with $A_{a b}$. If this A_{j} is a $K_{a, b}$, then We can choose the rest of the $a+b-2$ vertices of A_{j} from the remaining $n-2$ vertices of K_{n}, out of which we can choose $a-1$ for one partite of A_{j}, and the remaining $b-1$ to form the second partite of A_{j}, yielding a $K_{a, b}$ that shares at least one edge with $A_{a b}$. On the other hand, if this A_{j} is a $K_{c, d}$, then We can choose the rest of the $c+d-2$ vertices of A_{j} from the remaining $n-2$ vertices of K_{n}, out of which we can choose $c-1$ for one partite of A_{j}, and the remaining $d-1$ to form the second partite of A_{j}, yielding a $K_{a, b}$ that shares at least one edge with $A_{a b}$. Similarly, For each $E_{A_{c d}}$, the number of events that shares atleast one edge satisfies the inequality $\left|\left\{E_{A_{j}}:\left|A_{c d} \cap A_{j}\right| \geq 1\right\}\right| \leq c d\left\{\binom{n-2}{a-1}\binom{n-a-1}{b-1}+\binom{n-2}{c-1}\binom{n-c-1}{d-1}\right\}$. By applying Theorem 3 ,
we want to show that

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcap_{i=1}^{m} \bar{E}_{A_{i}}\right]>0 \tag{4.1}
\end{equation*}
$$

This non-zero probability (of none of the events $E_{A_{i}}$ occuring, for $1 \leq i \leq m$) implies the existence of some bicolouring of the edges of K_{n} with no red $K_{a, b}$ or blue $K_{c, d}$, thereby establishing the theorem. The Inequality 4.1 is satisfied if the following conditions hold.

$$
\begin{array}{r}
\operatorname{Pr}\left[E_{A_{a b}}\right] \leq x_{a b}\left(1-x_{a b}\right)^{a b\binom{n-2}{a-1}\binom{n-a-1}{b-1}}\left(1-x_{c d}\right)^{a b\binom{n-2}{c-1}\binom{n-c-1}{d-1}} \\
\operatorname{Pr}\left[E_{A_{c d}}\right] \leq x_{c d}\left(1-x_{a b}\right)^{c d\binom{n-2}{a-1}\binom{n-a-1}{b-1}}\left(1-x_{c d}\right)^{c d\binom{n-2}{c-1}\binom{n-c-1}{d-1},} \tag{4.2}\\
\text { for some } x_{a b}, x_{c d} .
\end{array}
$$

Choosing $x_{a b}=\frac{1}{a b\binom{n-2}{a-1}\binom{n-a-1}{b-1}+1}, x_{c d}=\frac{1}{c d\binom{n-2}{c-1}\binom{n-c-1}{d-1}+1}$ and using the inequalities $(1-p)^{c d} \leq$ $e^{-p c d}$ and $\left(1-\frac{1}{d+1}\right)^{d} \geq e$, we get

$$
\begin{align*}
& \left\{a b\binom{n-2}{a-1}\binom{n-a-1}{b-1}+1\right\} p^{a b} e^{1+\frac{a b}{c d}} \leq 1, \text { and } \\
& \left\{c d\binom{n-2}{c-1}\binom{n-c-1}{c-1}+1\right\} e^{-p c d} e^{1+\frac{c d}{a b}} \leq 1 \tag{4.3}
\end{align*}
$$

To get a lower bound on $R\left(K_{a, b}, K_{c, d}\right)$, we choose the largest value of n, such that both of these conditions are satisfied.

Solving the inequality in the statement of Theorem 27, we can compute lower bounds for $R\left(K_{a, b}, K_{a, b}\right)$, for natural numbers a and b. Such lower bounds for some larger values of a and b show significant improvements over the bounds computed using Theorem 26 (see Table 4.2).

4.3 The balanced off-diagonal case: $R\left(K_{a, a}, K_{b, b}\right)$

$R\left(K_{a, a}, K_{b, b}\right)$ is the minimum number n so that any n-vertex simple undirected graph G must contain a $K_{a, a}$ or its complement G^{\prime} must contain the complete bipartite graph $K_{b, b}$. Equivalently, $R\left(K_{a, a}, K_{b, b}\right)$ is the minimum number n such that any 2-coloring of the edges of an n-vertex complete undirected graph would contain a monochromatic
$K_{a, a}$ or a monochromatic $K_{b, b}$. As this case is equivalent to the unbalanced off-diagonal case with proper substitutions, we exclude the extended analysis of the lower bounds which are as follows.

Corollary 2. For all $n \in N$ and $0<p<1$, if $\binom{n}{a}\binom{n-a}{a} p^{a^{2}}+\binom{n}{b}\binom{n-b}{b}(1-p)^{b^{2}}<1$, then $R\left(K_{a, a}, K_{b, b}\right)>n$.

Corollary 3. If for some $0<p<1$, $\left\{a^{2}\binom{n-2}{a-1}\binom{n-a-1}{a-1}+1\right\} p^{a^{2}} e^{1+\frac{a^{2}}{b^{2}}} \leq 1$ and $\left\{b^{2}\binom{n-2}{b-1}\binom{n-b-1}{b-1}+1\right\} e^{-p b^{2}} e^{1+\frac{b^{2}}{a^{2}}} \leq 1$, then $R\left(K_{a, a}, K_{b, b}\right)>n$.

Chapter 5

Upper Bounds on $R\left(K_{a, b}, K_{a, b}\right)$ and $R\left(K_{a, b}, K_{c, d}\right)$

5.1 Existence and General Upper Bound

As we have already seen, in many cases we are able to establish a lower bound for some Bipartite Ramsey number $R\left(K_{a, b}, K_{a, b}\right)$ by finding a complete graph K_{n} and a 2-coloring of K_{n} such that there is no monochromatic $K_{a, b}$. Bipartite Ramsey theorem states that such a number exists for all a and b. Existence proof is achieved by proving a explicit bound. We show the Bipartite Ramsey number $R\left(K_{a, b}, K_{a, b}\right)$ is bounded by Ramsey number $R\left(K_{a+b}, K_{a+b}\right)$.

Theorem 28. $R\left(K_{a, b}, K_{a, b}\right) \leq R\left(K_{a+b}, K_{a+b}\right)$.
From Ramsey theorem we know that for any positive integers a and $b, R\left(K_{a}, K_{b}\right)$ always exist. Hence $R\left(K_{a+b}, K_{a+b}\right)$ also exists. $R\left(K_{a+b}, K_{a+b}\right)$ is the minimum number such that any bicoloring of the graph with this number of vertices always contain a monochromatic K_{a+b}. As K_{a+b} always contains a subgraph $K_{a, b}$, hence the number that guarantees a monochomatic K_{a+b} always guarantees a monochomatic $K_{a, b}$ and hence

$$
\begin{equation*}
R\left(K_{a, b}, K_{a, b}\right) \leq R\left(K_{a+b}, K_{a+b}\right) \tag{5.1}
\end{equation*}
$$

5.2. A Bad Upper Bound on $R\left(K_{a, b}, K_{a, b}\right)$

Figure 5.1: Construction for the upper bound.

5.2 A Bad Upper Bound on $R\left(K_{a, b}, K_{a, b}\right)$

Theorem 29. $R\left(K_{a, b}, K_{a, b}\right) \leq 2^{a} \cdot R\left(K_{a-1, b}, K_{a-1, b}\right), a<b$.
Proof We take $2^{a} \cdot R\left(K_{a-1, b}, K_{a-1, b}\right)$ number of vertices and show that $R\left(K_{a, b}, K_{a, b}\right)$ is bounded by it. 1). We take out exactly a vertices, name them as $v_{1}, v_{2}, \ldots, v_{a} .2$). Now color the entire graph randomly using two colors say red and blue. 3). Then we split the vertices of the graph into exactly 2^{a} groups, $B_{1}, B_{2}, \ldots, B_{2^{a}}$ based on the color of the edges they are connected to from $v_{1}, v_{2}, \ldots, v_{a}$, i.e if a vertex connected to all vertices of $v_{1}, v_{2}, \ldots, v_{a}$ by edges colored red, then it is placed in group B_{1} and if a vertex connected to all vertices of $v_{1}, v_{2}, \ldots, v_{a}$ by edges colored blue, then it is placed in group $B_{2^{a}}$. The construction is illustrated in 5.1. Now we claim that $\exists B_{i} \in\left\{B_{1}, B_{2}, \ldots, B_{2^{a}}\right\}$, such that $\left|B_{i}\right| \geq R\left(K_{a-1, b}, K_{a-1, b}\right)$.
This can be proved with a contradiction as follows:
if $\forall B_{i} \in\left\{B_{1}, B_{2}, \ldots, B_{2^{a}}\right\},\left|B_{i}\right|<R\left(K_{a-1, b}, K_{a-1, b}\right)$, then total number of vertices cannot exceed $2^{a} \cdot\left\{R\left(K_{a-1, b}, K_{a-1, b}\right)-1\right\}+a$, which is less than the number of vertices we have.
Case 1: $B_{i} \in\left\{B_{2}, \ldots, B_{2^{a}-1}\right\}$, such that $\left|B_{i}\right| \geq R\left(K_{a-1, b}, K_{a-1, b}\right)$.
Let B_{i} contains a red $K_{a-1, b}$. Then there exists atleast one vertex from $v_{1}, v_{2}, \ldots, v_{a}$ that is connected to every vertex of B_{i} with a edge colored red. This vertex combined with the $K_{a-1, b}$ forms the red $K_{a, b}$. Similar argument holds if B_{i} contains a blue $K_{a-1, b}$.
Case 2: $B_{i} \in\left\{B_{1}, B_{2^{a}}\right\}$, such that $\left|B_{i}\right| \geq R\left(K_{a-1, b}, K_{a-1, b}\right)$.
As $v_{1}, v_{2}, \ldots, v_{a}$ are connected to B_{1} by edges that are colored all red, if $\left|B_{1}\right| \geq R\left(K_{a-1, b}\right.$, $\left.K_{a-1, b}\right)$, then as $R\left(K_{a-1, b}, K_{a-1, b}\right)>b$, the vertices $v_{1}, v_{2}, \ldots, v_{a}$ along with b vertices from $\left|B_{1}\right|$ form a red $K_{a, b}$. Again As $v_{1}, v_{2}, \ldots, v_{a}$ are connected to $B_{2^{a}}$ by edges that are
colored all blue, if $\left|B_{2^{a}}\right| \geq R\left(K_{a-1, b}, K_{a-1, b}\right)$, then as $R\left(K_{a-1, b}, K_{a-1, b}\right)>b$, the vertices $v_{1}, v_{2}, \ldots, v_{a}$ along with b vertices from $\left|B_{2^{a}}\right|$ form a red $K_{a, b}$. This completes our proof that

$$
\begin{equation*}
R\left(K_{a, b}, K_{a, b}\right) \leq 2^{a} \cdot R\left(K_{a-1, b}, K_{a-1, b}\right), \text { for } a<b . \tag{5.2}
\end{equation*}
$$

5.3 Comparision of the Upper Bounds

From Inequality 5.1 and Inequality 5.2 , replacing b with a, we have two upper bounds on $R\left(K_{a, a}, K_{a, a}\right)$, which are as follows:

$$
\begin{gather*}
R\left(K_{a, a}, K_{a, a}\right) \leq R\left(K_{2 a}, K_{2 a}\right) . \tag{5.3}\\
R\left(K_{a, a}, K_{a, a}\right) \leq 2^{a} \cdot R\left(K_{a-1, a}, K_{a-1, a}\right) . \tag{5.4}
\end{gather*}
$$

Now as Ramsey number $R(a, a)<2^{2 a}$, from inequality 5.3. we get,

$$
\begin{equation*}
R\left(K_{a, a}, K_{a, a}\right) \leq 2^{4 a} . \tag{5.5}
\end{equation*}
$$

Expanding inequality 5.4 , we get,

$$
\begin{align*}
R\left(K_{a, a}, K_{a, a}\right) & \leq 2^{a} \cdot R\left(K_{a-1, a}, K_{a-1, a}\right) . \\
& \leq 2^{a+a-1} \cdot R\left(K_{a-2, a}, K_{a-2, a}\right) \\
& \leq 2^{a+a-1+\ldots+2} \cdot R\left(K_{1, a}, K_{1, a}\right) \\
& \leq 2^{a+a-1+\ldots+2} \cdot 2 a \\
& =2^{a+a-1+\ldots+2+1} \cdot a \\
& =2^{\frac{a \cdot(a-1)}{2}} \cdot a \\
=>R\left(K_{a, a}, K_{a, a}\right) & \leq 2^{\frac{a \cdot(a-1)}{2}} \cdot a \tag{5.6}
\end{align*}
$$

As $2^{4 a}<2^{\frac{a \cdot(a-1)}{2}} \cdot a$, inequality 5.5 gives a better upper bound for $R\left(K_{a, a}, K_{a, a}\right)$ than inequality 5.6, thus inequality 5.1 gives us a better bound.

5.4 Inductive upper bound for $R\left(K_{a, b}, K_{c, d}\right)$

Theorem 30. For $a \geq 2, b \geq 2, c \geq 2, d \geq 2, R\left(K_{a, b}, K_{c, d}\right) \leq R\left(K_{a, b-1}, K_{c, d}\right)+$ $R\left(K_{a, b}, K_{c, d-1}\right)$.

Proof We will proceed by induction on $a+b+c+d$. First we consider the base case in which $a+b+c+d=8$. The only way this can be true is if $a=b=c=d=2$, and it is known that $R\left(K_{2,2}, K_{2,2}\right)=6$ [3], where as $R\left(K_{1,2}, K_{2,2}\right)=4$ [12], hence this proves the base case. Now by induction hypothesis, we assume that the theorem holds whenever $a+b+c+d<N$, for some positive integer N. Now our objective is to show that theorem also holds for $a+b+c+d=N$. We assume that $a+b+c+d=N$. Then $a+b+c+d-1<N$, so by induction hypothesis, $R\left(K_{a, b-1}, K_{c, d}\right)$ and $R\left(K_{a, b}, K_{c, d-1}\right)$ exist and are finite.

Consider a complete graph on $R\left(K_{a, b-1}, K_{c, d}\right)+R\left(K_{a, b}, K_{c, d-1}\right)$ vertices. Pick a vertex v from the graph, and partition the remaining vertices into two sets M and N, such that for every vertex w, w is in M if (v, w) pair is blue, and w is in N if (v, w) is red. As the graph has $R\left(K_{a, b-1}, K_{c, d}\right)+R\left(K_{a, b}, K_{c, d-1}\right)=|M|+|N|+1$ vertices, by symmetry, it follows that either

$$
|M| \geq R\left(K_{a, b-1}, K_{c, d}\right) \text { or }|N| \geq R\left(K_{a, b}, K_{c, d-1}\right)
$$

In the former case, if M has a red $K_{c, d}$ then so does the original graph and we are finished. Otherwise M has a blue $K_{a, b-1}$ and so $M \cup\{v\}$ has blue $K_{a, b}$ by definition of M. In the latter case, if N has a blue $K_{a, b}$ then so does the original graph and we are finished. Otherwise N has a red $K_{c, d-1}$ and so $N \cup\{v\}$ has blue $K_{c, d}$.

Now using Theorem Theorem 30 ,

$$
\begin{aligned}
R\left(K_{a, b}, K_{c, d}\right) \leq & R\left(K_{a, b-1}, K_{c, d}\right)+R\left(K_{a, b}, K_{c, d-1}\right) \\
\leq & R\left(K_{a-1, b-1}, K_{c, d}\right)+R\left(K_{a, b-1}, K_{c, d-1}\right)+ \\
& R\left(K_{a, b-1}, K_{c, d-1}\right)+R\left(K_{a, b}, K_{c-1, d-1}\right) \\
\leq & R\left(K_{a-1, b-1}, K_{c, d}\right)+2\left(R\left(K_{a-1, b-1}, K_{c, d-1}\right)+\right. \\
& \left.R\left(K_{a, b-1}, K_{c-1, d-1}\right)\right)+R\left(K_{a, b}, K_{c-1, d-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & R\left(K_{a-1, b-1}, K_{c, d}\right)+2 R\left(K_{a-1, b-1}, K_{c, d}\right)+ \\
& 2 R\left(K_{a, b}, K_{c-1, d-1}\right)+R\left(K_{a, b}, K_{c-1, d-1}\right) \\
\leq & 3\left(R\left(K_{a-1, b-1}, K_{c, d}\right)+R\left(K_{a, b}, K_{c-1, d-1}\right)\right) \\
\Rightarrow R\left(K_{a, b}, K_{c, d}\right) \leq & 3\left(R\left(K_{a-1, b-1}, K_{c, d}\right)+R\left(K_{a, b}, K_{c-1, d-1}\right)\right) .
\end{aligned}
$$

5.5 Edge analysis for $K_{a, b}$ free structures

In order to establish bounds on $R\left(K_{a, b}, K_{a, b}\right)$, one strategy can be bounding the maximum possible edges that can be possible in a graph free from $K_{a, b}$. This is because using this bound we can get a graph G that is free from $K_{a, b}$ and then we can concentrate on the complement graph. Though this might not give the exact value of $R\left(K_{a, b}, K_{a, b}\right)$, this should give a tighter bounds. One such theorem that gives a bound on number of edges in a $K_{a, b}$ free graph is Kővári-Sós-Turán theorem that is discussed below.

Theorem 31 (Kővári-Sós-Turán Theorem). Let $G(V, E)$ be a graph that is free from $K_{a, b}(1 \leq a \leq b)$ as a subgraph and $n=|V|$, then $|E|=O\left(n^{2-\frac{1}{a}}\right)$

Proof To prove the bound we count the number of star configurations(i.e a vertex that has a neighbours). Let C be all such configurations. Then

$$
\begin{equation*}
|C|=\sum_{i=1}^{n}\binom{d_{i}}{a} \leq(b-1)\binom{n}{a} \tag{5.7}
\end{equation*}
$$

(we assume that each vertex has a degree greater than or equal to a.).
Holders inequality for sums: Let $\frac{1}{p}+\frac{1}{q}=1$ with $p, q \geq 1$.Then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{k} \cdot b_{k} \leq\left(\sum_{i=1}^{n} a_{k}{ }^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n} b_{k}{ }^{q}\right)^{\frac{1}{q}} \tag{5.8}
\end{equation*}
$$

Now replacing p by a, a_{k} by d_{i}, b_{k} by $1, \frac{1}{q}=1-\frac{1}{a}=\frac{a-1}{a}$ and from 5.8 we have,

$$
\begin{align*}
& \sum_{i=1}^{n} d_{i} \cdot 1 \leq\left(\sum_{i=1}^{n} d_{i}^{a}\right)^{\frac{1}{a}} \cdot\left(\sum_{i=1}^{n} 1\left(\frac{a}{a-1}\right)\right)^{\frac{a-1}{a}} \\
= & \left(\sum_{i=1}^{n} d_{i}\right)^{a} \leq\left(\sum_{i=1}^{n} d_{i}^{a}\right) \cdot n^{a-1} \\
= & \left(\sum_{i=1}^{n} d_{i}^{a}\right) \geq \frac{\left(\sum_{i=1}^{n} d_{i}\right)^{a}}{n^{a-1}}=\frac{(2|E|)^{a}}{n^{a-1}} \tag{5.9}
\end{align*}
$$

Again as $\sum_{i=1}^{n}\binom{d_{i}}{a}=\Omega\left(\sum_{i=1}^{n} d_{i}{ }^{a}\right)$, from 5.7 and 5.9 we get,

$$
\begin{align*}
(2|E|)^{a} & \leq c \cdot n^{a-1} \cdot(b-1)\binom{n}{a} \quad(c \text { is some constant }) \\
& \leq c \cdot n^{a-1} \cdot(b-1) \cdot \frac{n^{a}}{a!} \\
=>|E| & \leq O\left(n^{2-\frac{1}{a}}\right) \tag{5.10}
\end{align*}
$$

We may do the exact calculations to get exact bounds as follows.

$$
\begin{align*}
\sum_{i=1}^{n}\binom{d_{i}}{a} & \geq \sum_{i=1}^{n}\left(\frac{d_{i}}{a}\right)^{a} \\
& =\frac{1}{a^{a}} \cdot \sum_{i=1}^{n} d_{i}{ }^{a} \tag{5.11}
\end{align*}
$$

Now from 5.7, 5.9 and 5.11 we get,

$$
\begin{align*}
(2|E|)^{a} & \leq a^{a} \cdot n^{a-1} \cdot(b-1)\binom{n}{a} \\
& \leq a^{a} \cdot n^{a-1} \cdot(b-1) \cdot \frac{n^{a}}{a!} \\
=>|E| & \leq \frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}} \tag{5.12}
\end{align*}
$$

Figure 5.2: Addition of maximum edges with graph free from $K_{2,2}$ with $n=4$ and $n=5$.

Now We can analyse value of this $|E|$ with the actual values for small values of n, a and b. For $a=b=2$ and $n=4$,from 5.12 we get,

$$
\begin{equation*}
|E| \leq \frac{2}{2} \cdot \sqrt[2]{\frac{2-1}{2!}} \cdot 4^{2-\frac{1}{2}} \cong 5.65 \tag{5.13}
\end{equation*}
$$

But when we consider the actual graph with 4 vertices we can add atmost 4 edges without a $K_{2,2}$ as subgraph as shown in the figure below.

For $a=b=2$ and $n=5$,from 5.12 we get,

$$
\begin{equation*}
|E| \leq \frac{2}{2} \cdot \sqrt[2]{\frac{2-1}{2!}} \cdot 5^{2-\frac{1}{2}} \approx 7.9 \tag{5.14}
\end{equation*}
$$

But when we consider the actual graph with 5 vertices we can add atmost 6 edges without a $K_{2,2}$ as subgraph as shown in the figure below.

Upper bound for $R\left(K_{a, b}, K_{a, b}\right)$

Kővári-Sós-Turán theorem gives us a upper bound on the maximum number of edges that can be present in a $K_{a, b}$ free graph. So if the number of edges in any graph exceeds that value, we are guaranteed to get a $K_{a, b}$. We can utilize this fact to get a upper bound for $R\left(K_{a, b}, K_{a, b}\right)$.

Let us assume that $R\left(K_{a, b}, K_{a, b}\right)=n$. Then the total possible number of edges is $\frac{n(n-1)}{2}$. If $\frac{n(n-1)}{2}>2 \cdot \frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}}$ (i.e twice of that of the number of edges given by Kővári-Sós-Turán theorem), either G or G^{\prime} has number of edges greater than $\frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}}$.
$n^{2-\frac{1}{a}}$, thus always guaranteeing existence of $K_{a, b}$ in either G or G^{\prime}. So we have

$$
\begin{equation*}
\frac{n(n-1)}{2} \geq 2 \cdot \frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}}+1 \tag{5.15}
\end{equation*}
$$

The solution to this equation gives a upper bound for $R\left(K_{a, b}, K_{a, b}\right)$. Now we can solve the equation for different values of a and b to get the upper bound on the number of vertices. We solve the equation using a piece of Matlab code attached in Appendix A.4. We take the ceiling of the solutions if they are fraction in order to get the upper bound.

Table 5.1: Upper bounds on $R\left(K_{a, b}, K_{a, b}\right)$ from 5.15

b	1	2	3	4	5	6	7	8
a								
1	2	4	6	8	10	12	14	16
2		11	19	27	35	43	51	59
3			75	111	147	183	219	255
4				516	687	858	1028	1199
5					3339	4172	5005	5839
6						20742	24890	29037
7						125500	146415	
8								7456621

Now we can comapare these results with the bounds we have on $R\left(K_{a, a}, K_{a, a}\right)$ by $R\left(K_{2 a}, K_{2 a}\right)$. This actually gives us our best possible upper bounds.

Table 5.2: Comparision of Upper bounds on $R\left(K_{a, a}, K_{a, a}\right)$ from 5.15 and 5.1

a	$R\left(K_{a, a}, K_{a, a}\right)$	5.1
2	11	$R\left(K_{2 a}, K_{2 a}\right)$
3	75	18
4	516	167

Upper bound for $R\left(K_{a, b}, K_{c, d}\right)$

Just like the previous case, as Kővári-Sós-Turán theorem gives us a upper bound on the maximum number of edges that can be present in a $K_{a, b}$ free graph, if the number of
edges in any graph exceeds that value, we are guaranteed to get a $K_{a, b}$. We can utilize this fact to get a upper bound for $R\left(K_{a, b}, K_{c, d}\right)$ as follows.

Let us assume that $R\left(K_{a, b}, K_{c, d}\right)=n$. Then the total possible number of edges is $\frac{n(n-1)}{2}$. If $\frac{n(n-1)}{2}>\frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}}+\frac{c}{2} \cdot \sqrt[c]{\frac{d-1}{c!}} \cdot n^{2-\frac{1}{c}}$ (i.e sum of the maximum number of edges given by Kővári-Sós-Turán theorem for a $K_{a, b}$ free graph and a $K_{c, d}$ free graph), by symmetry, either G has number of edges greater than $\frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}}$ or or G^{\prime} has number of edges greater than $\frac{c}{2} \cdot \sqrt[c]{\frac{d-1}{c!}} \cdot n^{2-\frac{1}{c}}$, thus always guaranteeing existence of either $K_{a, b}$ in G or $K_{c, d}$ in G^{\prime}. So we have the following equation, which if we solve for n would give us a upper bound for $R\left(K_{a, b}, K_{c, d}\right)$.

$$
\begin{equation*}
\frac{n(n-1)}{2} \geq \frac{a}{2} \cdot \sqrt[a]{\frac{b-1}{a!}} \cdot n^{2-\frac{1}{a}}+\frac{c}{2} \cdot \sqrt[c]{\frac{d-1}{c!}} \cdot n^{2-\frac{1}{c}}+1 \tag{5.16}
\end{equation*}
$$

Chapter 6

Lower bounds for Ramsey numbers for complete tripartite 3-uniform subgraphs

Let $R^{\prime}(a, b, c)$ be the minimum number n such that any n-vertex 3-uniform hypergraph $G(V, E)$, or its complement $G^{\prime}(V, E)$ contains a $K_{a, b, c}$. An r-uniform hypergraph is a hypergraph where every hyperedge has exactly r vertices. (Hyperedges of a hypergraph are subsets of the vertex set. So, usual graphs are 2-uniform hypergraphs.) Here, $K_{a, b, c}$ is defined as the complete tripartite 3-uniform hypergraph with vertex set $A \cup B \cup C$, where the A, B and C have a, b and c vertices respectively, and $K_{a, b, c}$ has $a b c 3$-uniform hyperedges $\{u, v, w\}, u \in A, v \in B$ and $w \in C$. It is easy to see that $R^{\prime}(1,1,1)=3$; with 3 vertices, there is one possible 3-uniform hyperedge which either is present or absent in G.

6.1 $R^{\prime}(a, b, c)$ for small values of a, b, c

Theorem 32. $R^{\prime}(1,1,2)=4$.
Proof Consider the complete 3-uniform hypergraph with vertex set $V=\{1,2,3,4\}$ and set of exactly four hyperedges $H=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$. Since vertex 1 is present in 3 hyperedges, any (empty or non-empty) subset S of H, or its complement $H \backslash S$ must contain at least two hyperedges containing the vertex 1 . Observe that any such set of two hyperedges is a $K_{1,1,2}$.

Figure 6.1: Hypergraph G (left) and its complement G^{\prime} (right) each free from $K_{1,1,3}$

The fact that $R^{\prime}(1,1,3)>5$ can be established by counter example given in Figure $6.1 v_{1}, v_{2} \ldots, v_{5}$ represent the vertices and e_{1}, \ldots, e_{10} represent the 3-uniform hyperedges. G has five hyperedges namely $e_{1}(\{1,2,3\}), e_{2}(\{1,2,4\}), e_{3}(\{1,3,5\}), e_{4}(\{2,3,4\})$, $e_{5}(\{2,3,5\}) . G^{\prime}$ has the rest five hyperedges namely $e_{6}(\{1,2,5\}), e_{7}(\{1,3,4\}), e_{8}$ $(\{1,4,5\}), e_{9}(\{2,4,5\}), e_{10}(\{3,4,5\}) . R^{\prime}(1,1,4)>6$ can be established by the following counter example that splits the $\binom{6}{3}$ edges into G and G^{\prime} as follows: $G=\{\{1,2,4\}$, $\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,4,5\}\}$ and $G^{\prime}=\{\{1,2,3\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{2,4,6\},\{2,5,6\},\{3,4,5\},\{3,4,6\},\{3,5,6\}$, $\{4,5,6\}\}$.

All these lower bounds are derived using a particular algorithm which we demonstrate for the particular case of $R^{\prime}(1,1,3)>5$. As there are $\binom{5}{3}=10$ distinct 3-uniform hyperdges possible with 5 vertices, there are 2^{10} possible 3 -uniform hypergraphs. We designate each of the 10 hyperedges with a distict number starting from 0 to 9 . For example, hyperedge $\{1,2,3\}$ is mapped to 0 and $\{3,4,5\}$ is mapped to 9 . Then we generate all possible distinct $K_{1,1,3}$ which are $\binom{5}{2}=10$ in number. Then we generate all possible 2^{10} hypergraphs and check for existence of any of the $10 K_{1,1,3}$. For example, edges $\{\{1,2,3\},\{1,2,4\},\{1,2,5\}\}$ denotes the presence of $K_{1,1,3}(012)$, edges $\{\{1,2,3\},\{1,3,4\},\{1,3,5\}\}$ denotes the presence of $K_{1,1,3}(045)$. For generating all possible hypergraphs, we take a 10 -bit binary number, where each bit represent a parituclar hyperedge $\left(0^{\text {th }}\right.$ bit represent $\{1,2,3\}$ and $9^{\text {th }}$ bit represents $\{3,4,5\}$) and generate its all possible combinations. Now for any 10-bit binary string, we check for existence
of $K_{1,1,3}$. For example, let the binary string be 000000111 . It represents the hypergraph with edges $\{\{1,2,3\},\{1,2,4\},\{1,2,5\}\}$ which denotes the presence of $K_{1,1,3}(012)$. If for any hypergraph, none of the $K_{1,1,3}$ are present, then we check the existence of any of the $K_{1,1,3}$ in the complement hypergraph. The hypergraph for which both itself and its complement is free from any of the $K_{1,1,3}$ produce our counter example hypergraph.

Determining such Ramsey numbers for higher parameters by exhaustive searching using computer programs is computationally very expensive in terms or running time. We have the following upper bound for $R^{\prime}(1,1, b)$.

Theorem 33. $R^{\prime}(1,1, b) \leq 2 b+1$.
Proof Let $v_{1}, v_{2}, \ldots, v_{2 b+1}$ be the $2 b+1$ vertices. Then for any pair v_{i}, v_{j}, there are $2 b-1$ possible 3 -uniform hyperedges(each hyperedge contains one distinct vertex from the remaining vertices). So either the graph or its complement must contain b of these hyperedges containing v_{i} and v_{j}. This set of b hyperedges denote a $K_{1,1, b}$.

We state our conjecture for $R^{\prime}(1,1, b)$ as follows.
Conjecture 1. $2 b \leq R^{\prime}(1,1, b)$.
To settle this conjecture it is required to show that there exists some $2 b-1$-vertex 3 uniform hypergraph G such that neither G nor its complement G^{\prime} has a $K_{1,1, b}$. We related this problem to that of the existence of a t-design. A t-design is defined as follows. A $t-(v, k, \lambda)$ design is an incidence structure of points and blocks with properties (i) v is the number of points, (ii) each block is incident on k points, and (iii) each subset of t points is incident on λ common blocks [15].

Lemma 4. If there is a $2-(2 b-1,3, b-1)$ design then $R^{\prime}(1,1, b) \geq 2 b$.
Proof The existence of 2-($2 b-1,3, b-1)$ design would suggest that there exist a 3uniform hypergraph with $2 b-1$ vertices such that every pair of vertices for a hyperedge with exactly $b-1$ other vertices. This implies that the hypergraph is free of $K_{1,1, b}$. So every pair of vertices will also form a hyperedge in the complement hypergraph with exactly $b-2$ vertices. Therefore, the complement hypergraph is also free of $K_{1,1, b}$.

Table 6.1: Lower bounds for $R^{\prime}(a, a, a)$ by Theorem 34 (left) and Theorem 35 (right)

a	3	4	5	6	7	8
$R^{\prime}(a, a, a)$	14,19	84,138	800,1765	11773,35167	269569,1073543	9650620,50616072

Table 6.2: Lower bounds for $R^{\prime}(a, b, c)$ by Theorem 34 (left) and Theorem 35 (right)

	$\mathrm{a}=2$	$\mathrm{a}=3$	$\mathrm{a}=3$	$\mathrm{a}=3$	$\mathrm{a}=4$	$\mathrm{a}=4$	$\mathrm{a}=5$	$\mathrm{a}=6$	$\mathrm{a}=6$	$\mathrm{a}=6$	$\mathrm{a}=6$
c	5	3	4	5	4	5	5	2	3	4	5
b											
2	9,13	8,11	11,16	16,22	18,25	26,36	40,58	11,16	21,29	36,52	59,87
3	16,22	14,19	23,32	35,50	41,61	68,107	124,208		50,74	107,175	209,371
4	26,36		41,61	68,107	84,138	159,281	334,653			277,521	643,1354
5	40,58			124,208		334,653	800,1765				1740,4194

6.2 Probabilistic lower bound for $R^{\prime}(a, b, c)$

Theorem 34.

$$
\begin{equation*}
R^{\prime}(a, b, c)>\frac{\left(a^{a} b^{b} c^{c} \sqrt{(2 \pi)^{3} a b c}\right)^{\left(\frac{1}{a+b+c}\right)} 2^{\left(\frac{a b c-1}{a+b+c}\right)}}{e} . \tag{6.1}
\end{equation*}
$$

Proof Consider the probability of existence of a particular $K_{a, b, c}$ in G or G^{\prime}, where G is a 3-uniform hypergraph and G^{\prime} is its complement. The sum p of such probabilities over all possible distinct $K_{a, b, c}$'s is an upper bound on the probability that some $K_{a, b, c}$ exists in G or G^{\prime}. Let n be the number of vertices of hypergraph G. As in the proof of Theorem 22, we observe that the number of $K_{a, b, c}$'s is no more than $\binom{n}{a} \cdot\binom{n-a}{b} \cdot\binom{n-a-b}{c}$. Each $K_{a, b, c}$ has exactly $a b c$ hyperedges. Each hyperedge can be present in G or G^{\prime} with equal probability. So, the probability that all hyperedges of a particular $K_{a, b, c}$ are in G is $\left(\frac{1}{2}\right)^{a b c}$. Therefore, the probability that a particular $K_{a, b, c}$ is present in either G or G^{\prime} is $2 \cdot\left(\frac{1}{2}\right)^{a b c}=2^{1-a b c}$. So, the probability p that some $K_{a, b, c}$ is either in G or in G^{\prime}, is $\binom{n}{a} \cdot\binom{n-a}{b} \cdot\binom{n-a-b}{c} \cdot 2^{1-a b c}$. So choosing $n \frac{\left(a^{a} b^{b} c^{c} \sqrt{(2 \pi)^{3} a b c}\right)^{\left(\frac{1}{a+b+c}\right)_{2}\left(\frac{a b c-1}{a+b+c}\right)}}{e}$, as in Inequality 6.1. and replacing a ! by $\sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}}, b$! by $\sqrt{2 \pi} \frac{b^{b+\frac{1}{2}}}{e^{b}}$ and c ! by $\sqrt{2 \pi} \frac{c^{c+\frac{1}{2}}}{e^{c}}$ as per Stirling's approximation, we get $p<1$, guaranteeing the existence of an n-vertex graph

6.3. A lower bound for $R^{\prime}(a, b, c)$ using Lovász' local lemma

for which some edge bicoloring would not result in any monochrmatic $K_{a, b, c}$.

$$
\begin{aligned}
& p=\binom{n}{a} \cdot\binom{n-a}{b} \cdot\binom{n-a-b}{c} \cdot 2^{1-a b c} \\
& \leq \frac{n^{a}}{a!} \cdot \frac{(n-a)^{b}}{b!} \cdot \frac{(n-a-b)^{c}}{c!} \cdot 2^{1-a b c} \\
& <\frac{n^{a}}{a!} \cdot \frac{n^{b}}{b!} \cdot \frac{n^{c}}{c!} \cdot 2^{1-a b c} \\
& \leq \frac{n^{a+b+c}}{\left(\sqrt{2 \pi} \frac{a^{a+\frac{1}{2}}}{e^{a}}\right) \cdot\left(\sqrt{2 \pi} \frac{b^{b+\frac{1}{2}}}{e^{b}}\right) \cdot\left(\sqrt{2 \pi} \frac{c+\frac{1}{2}}{e^{c}}\right)} \cdot 2^{1-a b c} \\
& =1 .
\end{aligned}
$$

This establishes the theorem since $p<1$ implies the existence of a hypergraph G of n vertices such that neither G nor G^{\prime} has a $K_{a, b, c}$.

See Tables 6.1 and 6.2 for some computed lower bounds based on Theorem 34 and Theorem 35 ,

6.3 A lower bound for $R^{\prime}(a, b, c)$ using Lovász' local lemma

Theorem 35. If $e \cdot 2^{1-a b c} \cdot\left(a b c\binom{n-3}{a+b+c-3}\binom{a+b+c-3}{b-1}\binom{a+c-2}{c-1}+1\right) \leq 1, R^{\prime}(a, b, c)>n$
Proof Here we perform analysis as done earlier in Section 3.4.2. Consider a random bicoloring of the hyperedges of the complete 3-uniform hypergraph of n vertices, in which each hyperedge is independently colored red or blue with equal probability. Let S be the set of hyperedges of an arbitrary $K_{a, b, c}$, and let E_{S} be the event that the $K_{a, b, c}$ is coloured monochromatically. For each such $S, P\left(E_{S}\right)=2^{1-a b c}$. If we enumerate all possible $K_{a, b, c}$'s as $S_{1}, S_{2}, \ldots, S_{m}$, where $m=\binom{n}{a}\binom{n-a}{b}\binom{n-a-b}{c}$, each event $E_{S_{i}}$ is mutually independent of all the events from the set $\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right|=0\right\}$. For each $E_{S_{i}}$, the number of events outside this set satisfies the inequality $\left\{E_{S_{j}}:\left|S_{i} \cap S_{j}\right| \geq 1\right\} \leq$ $a b c\binom{n-3}{a+b+c-3}\binom{a+b+c-3}{b-1}\binom{a+c-2}{c-1}$, as every S_{j} in this set shares at least one of the $a b c$ hyperedges of S_{i}, and therefore S_{j} shares at least three vertices with S_{i}. We can choose the rest of the $a+b+c-3$ vertices of S_{j} from the remaining $n-3$ vertices, out of which we can choose $b-1$ for the second partite of S_{j}, and the remaining $c-1$ for the third
partite of S_{j}, thereby yielding a $K_{a, b, c}$ which shares at least one hyperedge edge with S_{i}. We can apply Corollary 1 to the set of events $E_{S_{1}}, E_{S_{2}}, \ldots, E_{S_{m}}$, with

$$
\begin{equation*}
p=2^{1-a b c}, d=a b c\binom{n-3}{a+b+c-3}\binom{a+b+c-3}{b-1}\binom{a+c-2}{c-1} \tag{6.2}
\end{equation*}
$$

yielding $e p(d+1) \leq 1 \Rightarrow>\operatorname{Pr}\left[\bigcap_{i=1}^{m} \bar{E}_{S_{i}}\right]>0$. Since no event $E_{S_{i}}$ occurs for some random bicoloring of the hyperedges, no monochromatic $K_{a, b, c}$ exists in that bicoloring. This establishes the theorem.

See Tables 6.1 and 6.2 for some computed lower bounds based on Theorem 35; the values based on Theorem 35 to the right in each cell of these tables are much better than those based on Theorem 34, to the left in the respective cells.

Chapter 7

Conclusion

Ramsey theory deals with the guaranteed occurrence of specific structures in some part of a large arbitrary structure which has been partitioned into finitely many parts. Bipartite Ramsey number $R\left(K_{a, b}, K_{a, b}\right)$ is just an extension from the original idea and also bounded by Ramsey number $R(a+b, a+b)$, hence it has similar characteristics as Ramsey numbers. All results in this theory typically have two primary features, their existence can be proved but they are non-constructive, and they grow exponentially. The probabilistic method is useful in establishing lower bounds for Ramsey numbers. It is worthwhile studying the application of Lovász' local lemma, possibly more effectively and accurately, so that higher lower bounds may be determined. In our work we have considered the bicoloring of K_{n} and the existence of a monochromatic $K_{a, b}$ in arbitrary bicolorings of the edges of K_{n}; some authors consider complete bipartite graphs $K_{n, n}$ instead of complete graphs like K_{n} and derive bounds for corresponding Ramsey numbers. There are a few open problems, some of which are highlighted below.

Open Problem 1. Whether $R\left(K_{2, b}, K_{2, b}\right)$ is equal to $4 b-2$.
Exoo et al. [7] proved that $R^{\prime}(2, b) \leq 4 b-2$ for all $b \geq 2$, where the equality holds if and only if a strongly regular $(4 b-3,2 b-2, b-2, b-1)$-graph exists (A k-regular graph G with n vertices is called strong regular graph (n, k, p, q) if every adjacent vertices share exactly p neighbours and every non adjacent vertices share exactly q neighbours).

Open Problem 2. Evaluating exact values for $R\left(K_{3, b}, K_{3, b}\right)$.

Exact values and upper bounds of $R\left(K_{3, b}, K_{3, b}\right)$ is known for very small values of b. For example, $R\left(K_{3,3}, K_{3,3}\right)=18[16], R\left(K_{3,4}, K_{3,4}\right) \leq 30$ [9], $R\left(K_{3,5}, K_{3,5}\right) \leq 38$ [9]. It is also known that $R\left(K_{3, b}, K_{3, b}\right) \leq 8 b-2[9]$. So the problem of finding the exact values and tighter bounds for this case is really worthwhile.

Open Problem 3. Constructive tighter lower bound for $R\left(K_{a, b}, K_{a, b}\right)$ and $R\left(K_{a, b}, K_{c, d}\right)$.
All the present bounds available for the general cases of $R\left(K_{a, b}, K_{a, b}\right)$ and $R\left(K_{a, b}, K_{c, d}\right)$ uses the probabilistic methods. Though the current bounds gives a idea about the numbers, but its is still very impossible to predict how good or bad the bound really is. So it is worthwhile to get some constructions for the lower bounds.

Open Problem 4. Whether $R^{\prime}(1,1, b) \geq 2 b$.
This is the conjecture we posed in Chapter 6. This conjecture may proven by showing the existence of a $2-(2 b-1,3, b-1)$ design as proven by Lemma 4 Settling of the conjecture would mean that $R^{\prime}(1,1, b)$ is lower bounded by $2 b$ and upper bounded by $2 b+1$, which would create a really tight bound for $R^{\prime}(1,1, b)$.

For computing the lower bounds in Tables 1, 2 and 3, we have used computer programs. As the sizes of the complete bipartite graphs (tripartite 3-uniform hypergraphs) grow, the computation time required for computing the lower bounds becomes prohibitive. Thus, even when looking for Ramsey numbers for other small values of (a, b, c, d) 's, a new theoretical approach seems to be essential.

Bibliography

[1] S. A. Burr, Diagonal Ramsey Numbers for Small Graphs, Journal of Graph Theory, 7 (1983) 57-69.
[2] S. A. Burr and J. A. Roberts, On Ramsey numbers for stars, Utilitas Mathematica, 4 (1973), 217-220.
[3] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers, Proceedings of the American Mathematical Society, 32 (1972) 389-394.
[4] Fan R. K. Chung and R. L. Graham, On Multicolor Ramsey Numbers for Complete Bipartite Graphs, Journal of Combinatorial Theory (B) 18, (1975) 164-169.
[5] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[6] P. Erdős and J. Spencer, "Paul Erdős : The Art of Counting", The MIT Press, (1973).
[7] G. Exoo, H. Harborth and I. Mengersen, On Ramsey Number of $K_{2, n}$, in Graph Theory, Combinatorics, Algorithms, and Applications (Y. Alavi, F. R. K. Chung, R. L. Graham and D. F. Hsueds.), SIAM Philadelphia, (1989) 207-211.
[8] F. Harary, Recent Results on Generalized Ramsey Theory for Graphs, in Graph Theory and Applications (Y. Alavi et al. eds.), Springer, Berlin (1972) 125-138.
[9] R. Lortz and I. Mengersen, Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs, Results in Mathematics, 41 (2002) 140-149.
[10] Tapas Kumar Mishra, Sudebkumar Prasant Pal, Lower bounds for Ramsey numbers for complete bipartite and 3-uniform tripartite subgraphs, WALCOM: Algorithms and Computation Proceedings, Lecture Notes in Computer Science Volume 7748, 2013, pp 257-264.
[11] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, (1995) 115-120.
[12] S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal on Combinatorics (2011).
[13] D. B. West, Introduction to Graph Theory, Second Edition, Pearson Prentice Hall, 2006.
[14] A. Soifer, Ramsey Theory: Yesterday, Today, and Tomorrow, Springer, (2009).
[15] Andries E. Brouwer, Block Designs, Handbook of Combinatorics Volume 1 (R.L. Graham, M. Grotschel, L. Lovasz, eds.), Elsevier (North-Holland) and MIT Press,(1995) 695-745.
[16] H. Harborth and I. Mengersen, The Ramsey Number of $K_{3,3}$, in Combinatorics, Graph Theory, and Applications, Vol. 2 (Y. Alavi, G. Chartrand, O.R. Oellermann and J. Schwenk eds.), John Wiley \& Sons, (1991) 639-644.
[17] Chen Guantao, A Result on C4-Star Ramsey Numbers, Discrete Mathematics, 163 (1997) 243-246.
[18] R. Lortz and I. Mengersen, On the Ramsey Numbers $R\left(K_{2, n-1}, K_{2, n}\right)$ and $R\left(K_{2, n}\right.$, $\left.K_{2, n}\right)$, Utilitas Mathematica, 61 (2002) 87-95.

Appendix A

Code for solving Inequalities $\mathbf{3 . 1}, 23,24,5.15$

A. 1 Code for solving Inequality 3.1

File:grahamslowbnd.m
clc;
format longE;
e=zeros (8,8);
for $\begin{aligned} & a=1: 8 \\ & \text { for } \quad b=1: 8\end{aligned}$

$$
\mathrm{c}=\mathrm{a}^{\wedge}(0.5) * \mathrm{~b}^{\wedge}(0.5) * 2^{\wedge}(\mathrm{a} * \mathrm{~b}-1)
$$

$\mathrm{c}=\mathrm{c} * 2 * \mathrm{pi}$;
$\mathrm{d}=\mathrm{c} \wedge(1 /(\mathrm{a}+\mathrm{b}))$;
$\mathrm{d}=\mathrm{d} *(\mathrm{a}+\mathrm{b}) / \exp (2) ;$
$e(a, b)=d$;
end
end
e

A. 2 Code for solving Inequality 23

File:lowerbound.m

```
    clc;
format longE;
e=zeros ( 8,8 );
```

```
for a=1:8
    for b=1:8
        c=a^(a+0.5) * b^(b+0.5) * 2^(a*b-1);
        c=c*2*pi;
        d=c^(1/(a+b));
                                d=d/exp(1);
            e(a,b)=d;
    end
end
e
```


A. 3 Code for extracting lowerbound from Theorem 24

File:Lovaslowerbound.m

```
format longE;
e=zeros(8,8);
for a=1:8
    for b=1:8
        for n=a+b:102
            c=2^(1-a*b);
                d=nchoosek(n,a+b-2);
            g=nchoosek(a+b-2,b-1);
                f}=\operatorname{exp}(1)*\textrm{c}*(\textrm{a}*\textrm{b}*\textrm{d}*\textrm{g}+1)
                if (f>1)
                    e(a,b)=n-1;
                    break;
                end
        end
    end
end
e
```


A. 4 Code for extracting upperbound from Inequality 5.15

File:Upperbound.m
format longE;
e=zeros (8,8);
for $a=1: 8$

```
    for b=1:8
        for n=a+b:102
            c=2^(1-a*b);
                d=nchoosek(n,a+b-2);
            g=nchoosek(a+b-2,b-1);
                    f}=\operatorname{exp}(1)*\textrm{c}*(\textrm{a}*\textrm{b}*\textrm{d}*\textrm{g}+1)
                    if (f>1)
                    e(a,b)=n-1;
                    break;
            end
        end
    end
end
e
```


Appendix B

Code for proving $R\left(K_{2,3}, K_{2,3}\right)>7, R^{\prime}(1,1,3 ; 3)>$ 5 and $R^{\prime}(1,1,4 ; 3)>6$

B. $1 \quad R\left(K_{2,3}, K_{2,3}\right)>7$

File:allcomb1.txt This file contains all the 210 possible $K_{2,3}$ with 7 vertices. Some of them are given below.

0	1	2	3	4
0	1	2	3	5
0	1	2	3	6
0	1	2	4	5
0	1	2	4	6

File:r2b7.c

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
    int main(){
    int a,b,i,j,k,n,c,d,e,temp;
    int G[7][7];
    int G1[7][7];
    int k2bExists=0;
    int x;
    FILE *fp;
    fp=fopen("allcomb1.txt", "r");
    x=pow (2,21);
    n=0;
    while (n<x ){
        temp=n;
```

```
    for (i=0; i<7; i++)
        for ( j=0; j < 7; j ++)
            G[i][j]=G1[i ][j]=0;
    for(i=6; i>=0;i--)
            for ( j=6; j > = 0; j --){
            if (j>i){
                G[i ][j]=G[j ][i]=n%2;
                G1[i][j]=G1[j][i]=G[i][j]^1;
                        n=n/2;
            }
            }
    while(!feof(fp)){
            fscanf(fp, "%d_%d_%d_%d_%d\n",&a,&b,&c,&d,&e);
            if (G[a][c]==1&&G[a][d]==1&&G[a][e]==1&&G[b][c]==1
                                    &&G[b][d]==1&&G[b][e]==1){
                    k2bExists=1;
                    break;
            }
        }
    if(k2bExists==0){
        rewind(fp);
        while(!feof(fp)){
            fscanf(fp,"%d`%d_%d
            if (G1[a][c]==1&&G1[a][d]==1&&G1[a][e]==1&&G1[b][c]==1
                                    &&G1[b][d]==1&&G1[b][e]==1){
                                    k2bExists=1;
                                    break;
            }
            }
    }
    n=temp;
    printf("%d_",temp);
    n++;
    if(k2bExists==0){
    printf("\nUnsuccessful_case found
    exit(0);
}
k2bExists=0;
}
printf("\nSuccessful_theorem
```

return 0;
\}

B. $2 R^{\prime}(1,1,3 ; 3)>5$

File:allk113.txt
012
034
135
245
067
168
278
369
479
589
File:r113.c
/*
Name : $\quad R^{\prime}(1,1,3 ; 3)$
Author : Tapas Kumar Mishrataplcse@gmail.com
Roll : 11CS60R32
Date : SUN AUG 1 16:14 IST 2012
Description : C Program to check whether R '(1,1,3;3)>5.
*/
\#include < stdio.h>
\#include<stdlib.h>
int main() $\{$
int $\mathrm{val}=0$;
int ver[10], vercom [10];
int $\mathrm{i}=0$, temp;
int $\mathrm{a}, \mathrm{b}, \mathrm{c}$;
int triexist $=0$;
FILE* fp;
//----"allkll3.txt" file contains all the possible $K(1,1,3)$. Initially
//-———"alltrip.txt" is created that contains all the possible
//————3-sets, that is formed lexicographically. Then from there, all
//———the possible $K(1,1,3)$ are extracted using careful observation.
//———EX : the vertices are numbered 1 to 5. There are 10 possible
//————3-combinations. A one to one mapping is done between a

```
//——_particular combination and integers 0 to 9.
//-~0
//----0 1 2 in allkll3.txt represents the presence of {{1,2,3},{1,2,4}
//-----{1,2,5}} K(1,1,3) in Graph.
//———As there are 10 such K(l,l,3), we check for each one using
//-----2^10=1024 cases. If in every case, the graph or its complement
//__contains some K(l,l,3), then we are done.
    fp=fopen("allk113.txt","r+");
    for(val=0; val < 1024; val++){
    rewind(fp);
    printf("%d\t",val);
temp=val;
for(i = 0; i < 10; i ++){
        ver[i]=0;vercom[i]=1;
}
i =0;
while (temp >0) {
                                    ver[i]=temp%2;
                                    vercom[i]=ver[i]^1;
                                    temp/=2;
                                    i++;
}
while(! feof(fp)){
                fscanf(fp,"%d_%%d_%d",&a,&b,&c);
        // printf("%d %d %d\n",a,b,c);
                if((ver[a]==1 && ver[b]==1 && ver[c]==1)|
                    (vercom[a]==1 && vercom[b]==1 && vercom[c]==1))
                        {
                                    triexist=1;
                                    break;
                                    }
    }
    if(triexist==0){
```

```
            printf("failed-for-value:%d\n",val);
            exit(0);
        }
        triexist=0;
}
fclose(fp);
printf("\nsuccess\n");
return 0;
}
```


B. $3 \quad R^{\prime}(1,1,4 ; 3)>6$

File:allk114.txt

```
0 1 2 3
0456
1478
2 5 7 9
3689
0
1
2}111\quad131
3}112141
4 10}1016\quad1
5
6
7}113161
8}114\quad17\quad1
9 15 18 19
```


File:r114.c

```
/*
Name : R '(1,1,4)
Author : Tapas Kumar Mishra<taplcse@gmail.com>
Roll : llCS60R32
Date : SUN AUG 1 20:00 IST 2012
Description : C Program to check whether R'(1,1,4;3)>6.
*/
#include<stdio.h>
#include<stdlib.h>
#include <math.h>
int main(){
```

```
int val=0;
int ver[20],vercom[20];
int i=0,temp;
int a,b,c,d,x;
int triexist=0;
//----"alltrip_verl.txt" file contains all the possible K(l,1,4).
//——_Initially "alltrip.txt" is created that contains all the
//——-possible 3-sets, that is formed lexicographically. Then
//—_f_from there, all the possible K(l,l,4) are extracted
//-_using careful observation. EX : the vertices are numbered
//----1 to 6. There are 20 possible 3-combinations. A one to
//——oone mapping is done between a particular
//-_-combination and integers 0 to 9.
//____________________l
//—______________ 1 2 
```



```
//__6_6 1 3 6
//——_-_-_ 1 4 5
```



```
//———————@ 1 5 6
```



```
//-_-_-_-_-_-_-_-_-_-_
//____-_15 2 5 6
//________________________
//-_-_-_-_-_-_-_-_-_-_}
//-_-_-_-_-_-_-_-_-_
//_-_-_-_-_-_-_-_-_
//----0 1 2 3 in alltrip_verl.txt represents the presence of
//-----{{1,2,3},{1,2,4},{1,2,5},{1,2,6}} K(1,1,4) in Graph.
//-_-As there are 15 such K(l,1,4), we check for each one
//———using 2^l5 cases. If in every case, the graph or its
//-_ complement contains some K(l,l,4), then we are done.
FILE *fp=fopen(" alltrip_ver.txt","r");
x=pow (2,20);
for(val=0; val<x; val++)
    printf("%d\t",val);
```

```
    rewind(fp);
temp=val;
printf("%d\t" ,val);
for (i = 0; i < 20; i ++){
            ver[i ]=0; vercom [i ]=1;
}
i =0;
while(temp >0) {
        ver[i ]= temp % 2;
        vercom[i]=ver[i]^^1;
        temp/=2;
        i ++;
}
    while(!feof(fp)){
        fscanf(fp, "%d_%d_%d_%d\n",&a,&b,&c,&d);
        if(( ver[a]==1&&ver [b]==1&&ver[c]==1&&ver [d]==1)||
            (vercom [a]==1&&vercom [b]==1&&vercom [c]==1&&vercom [d]==1))
                {
                                triexist=1;break;
            }
    }
    if(triexist==0){
            printf(" failed-for-value:%d \n", val );
            exit(0);
    }
    triexist=0;
}
fclose(fp);
printf("\nsuccess\n");
return 0;
}
```

