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As usual, we are given a dataset D = {(x1, y1), . . . , (xn, yn)},
drawn i.i.d. from some distribution P(X ,Y ). Throughout this
lecture we assume a regression setting, i.e. y ∈ R
In this lecture we will decompose the generalization error of a
classifier into three rather interpretable terms.

Before we do that, let us consider that for any given input x
there might not exist a unique label y .

For example, if your vector x describes features of house (e.g.
#bedrooms, square footage, ...) and the label y its price, you
could imagine two houses with identical description selling for
different prices.

So for any given feature vector x, there is a distribution over
possible labels. We therefore define the following, which will
come in useful later on:
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Expected Label (given x ∈ Rd):

ȳ(x) = Ey |x [Y ] =

∫
y

y Pr(y |x)∂y .

The expected label denotes the label you would expect to obtain,
given a feature vector x.
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we draw our training set D, consisting of n inputs, i.i.d. from the
distribution P. As a second step we typically call some machine
learning algorithm A on this data set to learn a hypothesis (aka
classifier). Formally, we denote this process as hD = A(D).
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For a given hD , learned on data set D with algorithm A, we can
compute the generalization error (as measured in squared loss) as
follows:
Expected Test Error (given hD):

E(x,y)∼P

[
(hD(x)− y)2

]
=

∫
x

∫
y

(hD(x)− y)2 Pr(x, y)∂y∂x.
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The previous statement is true for a given training set D.
However, remember that D itself is drawn from Pn, and is
therefore a random variable.
Further, hD is a function of D, and is therefore also a random
variable. And we can of course compute its expectation:
Expected Classifier (given A):

h̄ = ED∼Pn [hD ] =

∫
D

hD Pr(D)∂D

where Pr(D) is the probability of drawing D from Pn. Here, h̄ is a
weighted average over functions
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We can also use the fact that hD is a random variable to compute
the expected test error only given A, taking the expectation also
over D.
Expected Test Error (given A):

E(x,y)∼P
D∼Pn

[
(hD(x)− y)2

]
=

∫
D

∫
x

∫
y

(hD(x)− y)2 P(x, y)P(D)∂x∂y∂D

To be clear, D is our training points and the (x, y) pairs are the
test points.
We are interested in exactly this expression, because it evaluates
the quality of a machine learning algorithm A with respect to a
data distribution P(X ,Y ). In the following we will show that this
expression decomposes into three meaningful terms.
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Decomposition of Expected Test Error

Ex,y ,D

[
[hD(x)− y ]2

]
= Ex,y ,D

[[(
hD(x)− h̄(x)

)
+
(
h̄(x)− y

)]2]
= Ex,D

[
(hD(x)− h̄(x))2

]
+

2 Ex,y ,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]︸ ︷︷ ︸
0

+Ex,y

[(
h̄(x)− y

)2
]

(1)
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The middle term of the above equation is 0 as we show below

Ex,y ,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]
= Ex,y

[
ED

[
hD(x)− h̄(x)

] (
h̄(x)− y

)]
= Ex,y

[(
ED [hD(x)]− h̄(x)

) (
h̄(x)− y

)]
= Ex,y

[(
h̄(x)− h̄(x)

) (
h̄(x)− y

)]
= Ex,y [0]

= 0
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Ex,y ,D

[
[hD(x)− y ]2

]
= Ex,y ,D

[[(
hD(x)− h̄(x)

)
+
(
h̄(x)− y

)]2]
= Ex,D

[
(hD(x)− h̄(x))2

]
+

2 Ex,y ,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]︸ ︷︷ ︸
0

+Ex,y

[(
h̄(x)− y

)2
]

(2)

Returning to the earlier expression, we’re left with the variance and
another term

Ex,y ,D

[
(hD(x)− y)2

]
= Ex,D

[(
hD(x)− h̄(x)

)2
]

︸ ︷︷ ︸
Variance

+Ex,y

[(
h̄(x)− y

)2
]

(3)
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We can break down the second term in the above equation as
follows:

Ex,y

[(
h̄(x)− y

)2
]

= Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2
]

= Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2
]

︸ ︷︷ ︸
Bias2

+

2 Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

]︸ ︷︷ ︸
0

(4)
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)2
]

= Ex,y

[
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The third term in the equation above is 0, as we show below

Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

]
= Ex

[
Ey |x [ȳ(x)− y ]

(
h̄(x)− ȳ(x)

)]
= Ex

[
Ey |x [ȳ(x)− y ]

(
h̄(x)− ȳ(x)

)]
= Ex

[(
ȳ(x)− Ey |x [y ]

) (
h̄(x)− ȳ(x)

)]
= Ex

[
(ȳ(x)− ȳ(x))

(
h̄(x)− ȳ(x)

)]
= Ex [0]

= 0
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)]
= Ex

[(
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(ȳ(x)− y)

]
= Ex

[
Ey |x [ȳ(x)− y ]
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(ȳ(x)− ȳ(x))
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This gives us the decomposition of expected test error as follows

Ex,y ,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2
]

︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+

Ex

[(
h̄(x)− ȳ(x)

)2
]

︸ ︷︷ ︸
Bias2
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Variance: Ex,D

[(
hD(x)− h̄(x)

)2
]

︸ ︷︷ ︸
Variance

Captures how much your classifier changes if you train on a
different training set.
How ”over-specialized” is your classifier to a particular training set
(overfitting)?
If we have the best possible model for our training data, how far
off are we from the average classifier?
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Bias: Ex

[(
h̄(x)− ȳ(x)

)2
]

︸ ︷︷ ︸
Bias2

What is the inherent error that you obtain from your classifier even
with infinite training data?
This is due to your classifier being ”biased” to a particular kind of
solution (e.g. linear classifier).
In other words, bias is inherent to your model.
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Noise: Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise
How big is the data-intrinsic noise?
This error measures ambiguity due to your data distribution and
feature representation. You can never beat this, it is an aspect of
the data.
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Figure : Graphical illustration of bias and variance.
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Figure : The variation of Bias and Variance with the model complexity.
This is similar to the concept of overfitting and underfitting. More
complex models overfit while the simplest models underfit.
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Detecting High Bias and High Variance

Figure : Test and training error as the number of training instances
increases.

The graph above plots the training error and the test error and can
be divided into two overarching regimes. In the first regime (on the
left side of the graph), training error is below the desired error
threshold (denoted by ε), but test error is significantly higher.
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Figure : Test and training error as the number of training instances
increases.

In the second regime (on the right side of the graph), test error is
remarkably close to training error, but both are above the desired
tolerance of ε.
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Regime 1 (High Variance)
Symptoms:

Training error is much lower than test error

Training error is lower than ε

Test error is above ε

Remedies:

Add more training data

Reduce model complexity – complex models are prone to high
variance

Bagging (will be covered later in the course)

Tapas Kumar Mishra Bias-Variance Tradeoff
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Regime 2 (High Bias): the model being used is not robust enough
to produce an accurate prediction
Symptoms:

Training error is higher than ε, but close to test error.

Remedies:

Use more complex model (e.g. kernelize, use non-linear
models)

Add features

Boosting (will be covered later in the course)
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