PART 20
INTRODUCTION INTO PRIMAL DUAL
ALGORITHMS

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)
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A generic problem

Situation: We want to approximate a problem, which (in
many cases) is of the form

n
min E C].’EJ
i=1

n
Zaijxj > biViZI,...,m
Jj=1

zj € {0,1} Vi=1,...,n

Examples so far: SET COVER, STEINER TREE, VERTEX
COVER,. ..
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A primal-dual pair

Primal ”covering” LP:
n
min E CjTj
j=1
n
=1

Lj

Dual ”packing” LP:
m
max Z biy;
i=1

m
E Ai5Y;
i=1

Yi

v

v

IN

Vv

(P)
by Vi=1,
0 Vj=1,
(D)
c; Vj=1,
0 Vi=1,



A generic Approximation algorithm

Generic primal-dual algorithm:
(1) z:=0,y=0
(2) WHILE z not feasible DO

(3) Increase dual variables in a suitable way until some dual
constraint j becomes tight
(4) Set T = 1

(5) RETURN =z

Generic analysis:
» Show: At the end z is integer and feasible for primal
» Show: At the end y is feasible for dual
> Show: 377 cjzj < - 37, biy; (s the apx factor)

dual solutions primal solutions

0 Z?;Lbiyi OPT;  OPT Z?:j Cji;

~
< factor of «
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Relaxed complementary slackness

Lemma

Let o, 8 > 1. Let z,y be primal/dual feasible solutions obtained
by the algorithm. If

(A) Relazed primal compl. slack.: x; > 0= c; < ad 0", aijy;
(B) Relazed dual compl. slack.: y; > 0= E?Zl asjTj < B - b;
Then APX < «a-f-OPTy.

» Let APX be the cost of the produced solution. Then

APX = Zijj < ij (aZaijyi> :aZinaijxj
j=1 j=1 i=1 i=1 j=1

(B) m y dual feasible
< aBd b < ef-OPT; O
=1
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STEINER FOREST
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Steiner Forest

Problem: STEINER FOREST
» Given: Undirected graph G = (V, F), edge cost
c¢: E — Qy, terminal pairs (s1,t1),. .., (Sk, tk)
» Find: Minimum cost subgraph F' connecting all terminal
pairs:

OPT = min { Zc(e) |Vi=1,...,k: F connects s; and ti}
FeE eclF

\/6
AN N
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Steiner Forest

Problem: STEINER FOREST
» Given: Undirected graph G = (V, F), edge cost
c¢: E — Qy, terminal pairs (s1,t1),. .., (Sk, tk)
» Find: Minimum cost subgraph F' connecting all terminal
pairs:

OPT = min { Zc(e) |Vi=1,...,k: F connects s; and ti}
FeE eclF

N
SN




The LP relaxation
» For any S C V define cut requirement

£(5) = {1 if 3i: |S N {si,ti}] =1

0 otherwise

Dual LP:
max Y f(S)ys (D)
SCV
Z ys < c. Ve€FE
S:e€d(S)

<
0
v
()
<
n
N
<



Preliminaries

» For FCE,SCV: 6p(S)={{u,v} € FlueSv¢S}

> A cut S CV is violated by F' C F, if there is a terminal
pair (s;,t;) with [{s;,t;} NS| =1 but 6p(S) =10

> A cut S is active w.r.t. F, if S is violated and minimal
(i.e. there is no subset S’ C S that is also violated).

» An edge e is tight w.r.t. a dual solution (ys)g if

252866(5) Ys = Ce
(i.e. if the dual constraint of ¢, satisfied with equality).




The algorithm

(1) F:==0,y:=0
(2) WHILE 3 violated cut DO

(3) Increase simultaneously ys for all active cuts S, until some
edge e gets tight
(4) Add the tight edge e to F

(5) Compute an arbitrary minimal feasible solution F' C F




The active cuts

Lemma
The active cuts w.r.t. F C E are connected components of F'.

» Counsider active cut S (S minimal, f(S) =1, dp(S) =0).
» 0p(S) = 0 = connected components of F' are either fully
contained in S or fully outside

» S is violated, hence there is a pair |{s;,t;} N S| =1
» The connected component of F' inside S that contains s; is
also violated. Hence, S is a single connected component (or

we would have a contradiction). O
F. ° ot;
® ® [ ] [ ]

1
1
1
|
S ! S
\E—)
1
1

impossible

correct

impossible




Example
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Example
edges added to F

ys =6 for S = {s2}
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F at the end of WHILE loop
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Solution F’
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Feasibility

Lemma J

F' is a feasible solution.

» Let F' be the solution at the end of the WHILE loop.
» Fis feasible, because there is no violated cut.

» We do not delete necessary edges, hence F’ is also
feasible. O

Lemma
y 1s dual feasible, i.e. 251665(5) ys < ce for all e € E. J

» Each time that an edge e gets tight (i.e.
D Siecs(s) Ys = Ce); we add it to F.

» We increase yg only for violated cuts — not for cuts
containing edges of F'. O




The main analysis (1)

Lemma
Let y be the dual solution at the end of the algorithm. Then

APX = Zceg2zysg2-0PTf.
ecF’ SCV

Zceeghtz< > ys)=Z|5F' S<22y5

ecF" e€F"  Siecd(S) SCV Scv

» Consider any iteration :. Let « be the amount by which the
dual variables yg were increased. We show (*) by proving

a- Z |05/ (S)| < 2 -« - #active sets in it.s

S active in it.i




The main analysis (2)

> Consider an intermediate iteration 7 with intermediate F'.
» Remark: F'\F might contain edges that are added later
F\F' might contain edges that are deleted at the end.

> Claim:
Z |0F(S)| < 2 - #active sets in iteration %
S active in it.;

» Shrink connected components of F — H' (S becomes node
vg). Nodes vg steming from active cuts S are active nodes,
others are inactive nodes

active S \

"‘ - ‘\ . . S,
O == =@ active
&~ = ~¢)inactive

» H'is a forest. Degrees are preserved.
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The main analysis (2)

> Consider an intermediate iteration 7 with intermediate F'.
» Remark: F'\F might contain edges that are added later
F\F' might contain edges that are deleted at the end.
> Claim:
Z |0F(S)| < 2 - #active sets in iteration %
S active in it.;
» Shrink connected components of F — H' (S becomes node
vg). Nodes vg steming from active cuts S are active nodes,
others are inactive nodes

H :

® O O
active vg

FI

®inactive vg

» H'is a forest. Degrees are preserved.




The main analysis (2)

H'

o O O
active vg

Fl

@inactive vg

» Consider non-singleton leaf vg. Edge to vg was not deleted.
Hence f(S) = 1. But then S was active (since S is a
connected component of F' at iteration 7).

» Average degree over all nodes in a forest is < 2 (since #
edges < # nodes) and each edge contributes at most 2 to
the degrees.

» Inactive nodes are inner nodes of degree > 2, hence average
degree of active nodes < average degree < 2. O




Deleting redundant edges is crucial

-

S == =

Observation: Without the pruning step at the end of the
algorithm, the solution would cost n + 4 instead of 4.




Conclusion

Theorem

The primal dual algorithm produces a 2-approzimation in time
O(n?logn).

Remark: The algorithm works whenever the requirement
function f : 2" — {0, 1} is proper, that means
» f(V)=0
> f(S) = f(V\S) (symmetry)
» If A,B CV are disjoint and f(AU B) =1 then f(A) =1
or f(B)=1.
Note: Function f for STEINER FOREST is proper.




State of the art

» There is no %—approximation algorithm unless NP = P
(same ratio as for the special case of STEINER TREE).

» There is still no better than 2-approximation known.

» The integrality gap of the considered LP is in fact exactly
2.

» There is also no other LP formulation known, which might
have a smaller gap.
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Facility Location

Problem: FACILITY LOCATION
» Given: Facilities F', cities C, opening cost f; for every
facility 7. Metric cost ¢;; for connecting city j to facility s.

» Find: Set of facilities I and an assignment ¢ : C' — I of
cities to opened facilities, minimizing the total cost:

OPT = Ig}gﬁ)i:rclﬁl{ Sfi+> C¢(j),j}

il jec

C F

s » Remark: Without the metric

. assumption, the problem
becomes O(logn)-hard.

. » We assume w.l.o.g. ¢;j, fi € Z4

o fi
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The primal dual pair

Primal LP: mmzcw% + Z fiui

1eF
ZiEF Tij > 1 VYjeC
Tij <y Vie FVjeCl
Tij > 0 YieFVjeCl
yi > 0 VieF
Dual LP: maxz o
jecC
aj < ¢j+pBi; VieFVjel
djechBii < fi VieF
a; > 0 VjeC
/Bij > 0 Vi e F Vj eC

Intuition:
> «; is the amount that city j "pays” in total.
> [i; is what city j "pays” to open facility ¢.




The algorithm - Phase 1:

(1) Initially all cities are unconnected

(2) :=0,8:=0,F,:= 1

(3) WHILE not all cities are connected DO

(4) FOR ALL unconnected cities 7 DO

(5) Increase «vj (by 1 per time unit)

(6) For tight edges a; = ¢;; + fij increase also f;;
() IFY, By = fi (new) THEN

(8) open facility ¢ temporarily (F} := F; U {i})

(9) FOR ALL cities j where edge (i, 7) is tight DO
(10) connect city to facility ¢
(11) facility ¢ is connection witness of j: w(j) :=1
Phase 2:

Let H = (F}, E') with (i,i') € E' if 3j € C : By, By; > 0

Open a maximal independent set I C F}

FOR ALL j € C DO
IF 35 € I: B;; > 0 THEN ¢(j) := ¢ (j directly conn.)
ELSE IF w(j) € I THEN ¢(j) := w(j) (j directly conn.)
ELSE ¢(j) := a neighbour of w(j) in H (j indir. conn.)

N N N N S N
— N N N




Example:

Phase 1 - Time: 0

C F

N

¥

M

¥



Example:

Phase 1 - Time: 1
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Example:

Phase 1 - Time: 2
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Example:

conn.: w(l) =1,

conn.: w(2) =1,

conn.: w(3) =1,

Phase 1 - Time: 3

ap = © f1 =4 temp. opened

g =«

wl fa=25
a3 = K
oy = fz3=2




Example:
Phase 1 - Time: 4

conn.: w(l) =1, oy =3 © f1 =4 temp. opened

conn.: w(2) =1, ay = 3 e<

D fo = 5 temp. opened

conn.: w(3) =1, a3 =3 e

conn.: w(4) =2, oy =4




Example:
Phase 2: Graph H

C F

f1 =4 temp. opened
I
I
I
1 H
1
1
I

fo =5 temp. opened




Example:

Phase 2: The solution

C F
. € I (facility opened)




Analysis

Theorem
One has 3 jec Co(y),g + 2ier fi < 3L jec @4 J
We account the dual ”payments”
o if j directl ted
af := payment for opening := Peti). 1 ] ‘ 11tec ‘y conmecte
0 if 7 is indirectly conn.
af := payment for connection := Coli)y 1L directly connected
I o if 7 is indirectly conn.

im: s — o c
Claim: «a; = a; + aj.
» For indirectly connected cities: clear

» For directly connected cities: aj = c,(j); + By(j),; because
edge (4(j),7) was tight.




Bounding the opening costs

Lemma
The dual prices pay for the opening cost, i.e.

> fi=d e

il jec

» A facility 7 € I was temporarily opened because j Bij = fi

» All j with 3;; > 0 must be directly connected to 7 because:
We opened an independent set in H in Phase 2, hence any
i’ € F; with ,Bilj > (0 is not in [

» Thus all j with 3;; > 0 e
Z af _ Z Bis i temp_opened fi W
' €cH

]¢ Bz]>0 ) e

Z

» The claim follows from Birj >0

Sof=Y ¥ af=Y 5 O e

jec i€l jip(j)=i il



Bounding the connection cost

Lemma

For any city j € C one has cy;) ; < 301;.

» If j directly connected, then even of = c,(;
suppose j is indirectly connected.

» Then there is an edge (w(j), #(j)) € H (since j was
indirectly connected).

g Next,

» This edge implies that there is a j' € C' with
Botirit > 0 Bugj),jr > 0-
je tight: a; > Cw(j),j

’ re H
mv\ww(j)ef

j e




Bounding the connection cost (2)

» Event B,;),; > 0 only ; ‘
happened if aj Z C’w(j),j' For \‘ )
the same reason: ajr > ¢y 5 Boiy.ir >0 o(j) €1

and aj > cg(jy it

» Claim o; > ajr: Con31der the time ¢, when w(j) was
temporarily opened. Since w(j) is connection witness of j,
aj > t. At this time ¢, it was f,(;); > 0 (since if
Buw(j),i = 0 at that time, then ,Bw jo =0 forever). At the
latest at this time ¢, also j' was connected and aj stopped
growing. Hence a; >t > ajr.

» Then

metric ineq.

Cotrd S Cw@)i T Cwl)g T ey < B3a =3aj O
——r W—’ W—’

<aj gajzga]- gaj,gaj




Conclusion

Theorem

The algorithm produces a 3-approzimation in time
O(m -log(m)), where m = |C| - |F| is the number of edges.

State of the art:

Theorem (Byrka '07)
There is a 1.499-apz for FACILITY LOCATION.

» The integrality gap for the considered LP lies in
[1.463,1.499].

Theorem

There is no polynomial time 1.463-apz for FACILITY LOCATION
unless NP C DTIME (n©(loglogn)),




