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A generi problemSituation: We want to approximate a problem, whih (inmany ases) is of the formmin nXj=1 jxjnXj=1 aijxj � bi 8i = 1; : : : ;mxj 2 f0; 1g 8j = 1; : : : ; nExamples so far: Set Cover, Steiner tree, VertexCover,: : :
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A primal-dual pairPrimal "overing" LP:min nXj=1 jxj (P )nXj=1 aijxj � bi 8i = 1; : : : ;mxj � 0 8j = 1; : : : ; nDual "paking" LP:max mXi=1 biyi (D)mXi=1 aijyi � j 8j = 1; : : : ; nyi � 0 8i = 1; : : : ;m 201 / 292



A generi Approximation algorithmGeneri primal-dual algorithm:(1) x := 0; y = 0(2) WHILE x not feasible DO(3) Inrease dual variables in a suitable way until some dualonstraint j beomes tight(4) Set xj := 1(5) RETURN xGeneri analysis:I Show: At the end x is integer and feasible for primalI Show: At the end y is feasible for dualI Show: Pnj=1 jxj � � �Pmi=1 biyi (� is the apx fator)0 Pmi=1 biyi OPTf OPT Pnj=1 jxj� fator of �dual solutions primal solutions 202 / 292



Relaxed omplementary slaknessLemmaLet �; � � 1. Let x; y be primal/dual feasible solutions obtainedby the algorithm. If(A) Relaxed primal ompl. slak.: xj > 0) j � �Pmi=1 aijyi(B) Relaxed dual ompl. slak.: yi > 0)Pnj=1 aijxj � � � biThen APX � � � � �OPTf .I Let APX be the ost of the produed solution. ThenAPX = nXj=1 jxj (A)� nXj=1 xj�� mXi=1 aijyi� = � mXi=1 yi nXj=1 aijxj(B)� �� mXi=1 yibi y dual feasible� �� � OPTf 203 / 292
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Steiner ForestProblem: Steiner ForestI Given: Undireted graph G = (V;E), edge ost : E ! Q+ , terminal pairs (s1; t1); : : : ; (sk; tk)I Find: Minimum ost subgraph F onneting all terminalpairs:OPT = minF�EnXe2F (e) j 8i = 1; : : : ; k : F onnets si and tio
s2 t2
s1 t1 s3

t333 3 33 68
8

5
5 205 / 292



Steiner ForestProblem: Steiner ForestI Given: Undireted graph G = (V;E), edge ost : E ! Q+ , terminal pairs (s1; t1); : : : ; (sk; tk)I Find: Minimum ost subgraph F onneting all terminalpairs:OPT = minF�EnXe2F (e) j 8i = 1; : : : ; k : F onnets si and tio
s2 t2
s1 t1 s3

t3
8
8

5
533 3 3 3 6F 206 / 292



The LP relaxationI For any S � V de�ne ut requirementf(S) = (1 if 9i : jS \ fsi; tigj = 10 otherwisePrimal LP relaxation:minXe2E exe (P )Xe2Æ(S) xe � f(S) 8S � Vxe � 0 8e 2 EDual LP: maxXS�V f(S)yS (D)XS:e2Æ(S) yS � e 8e 2 EyS � 0 8S � V 207 / 292



PreliminariesI For F � E;S � V : ÆF (S) = ffu; vg 2 F j u 2 S; v =2 SgI A ut S � V is violated by F � E, if there is a terminalpair (si; ti) with jfsi; tig \ Sj = 1 but ÆF (S) = ;I A ut S is ative w.r.t. F , if S is violated and minimal(i.e. there is no subset S0 � S that is also violated).I An edge e is tight w.r.t. a dual solution (yS)S ifPS:e2Æ(S) yS = e(i.e. if the dual onstraint of e satis�ed with equality).
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The algorithm(1) F := ;, y := 0(2) WHILE 9 violated ut DO(3) Inrease simultaneously yS for all ative uts S, until someedge e gets tight(4) Add the tight edge e to F(5) Compute an arbitrary minimal feasible solution F 0 � F

209 / 292



The ative utsLemmaThe ative uts w.r.t. F � E are onneted omponents of F .I Consider ative ut S (S minimal, f(S) = 1, ÆF (S) = ;).I ÆF (S) = ; ) onneted omponents of F are either fullyontained in S or fully outsideI S is violated, hene there is a pair jfsi; tig \ Sj = 1I The onneted omponent of F inside S that ontains si isalso violated. Hene, S is a single onneted omponent (orwe would have a ontradition).F Simpossible si tiF Simpossible Forret 210 / 292



Example

s2 t2
s1 t1612 9 612

20
16 19
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Example

s2 t2
s1 t1612 9 612

20
16 19

ative set 212 / 292



Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

6 6yS = 6 for S = fs2g

edges added to F
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 2 8
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 21 3 9
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 3 92
F at the end of WHILE loop

edge not neessary
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 3 92
Solution F 0 217 / 292



FeasibilityLemmaF 0 is a feasible solution.I Let F be the solution at the end of the WHILE loop.I F is feasible, beause there is no violated ut.I We do not delete neessary edges, hene F 0 is alsofeasible.Lemmay is dual feasible, i.e. PS:e2Æ(S) yS � e for all e 2 E.I Eah time that an edge e gets tight (i.e.PS:e2Æ(S) yS = e), we add it to F .I We inrease yS only for violated uts { not for utsontaining edges of F . 218 / 292



The main analysis (1)LemmaLet y be the dual solution at the end of the algorithm. ThenAPX = Xe2F 0 e � 2XS�V yS � 2 �OPTf :Xe2F 0 e e tight= Xe2F 0 � XS:e2Æ(S) yS� = XS�V jÆF 0(S)j � yS (�)� XS�V 2ySI Consider any iteration i. Let � be the amount by whih thedual variables yS were inreased. We show (*) by proving� � XS ative in it.i jÆF 0(S)j � 2 � � �#ative sets in it.i 219 / 292



The main analysis (2)I Consider an intermediate iteration i with intermediate F .I Remark: F 0nF might ontain edges that are added laterFnF 0 might ontain edges that are deleted at the end.I Claim: XS ative in it.i jÆF 0(S)j � 2 �#ative sets in iteration iI Shrink onneted omponents of F ! H 0 (S beomes nodevS). Nodes vS steming from ative uts S are ative nodes,others are inative nodesF inative Sative SI H 0 is a forest. Degrees are preserved. 220 / 292



The main analysis (2)I Consider an intermediate iteration i with intermediate F .I Remark: F 0nF might ontain edges that are added laterFnF 0 might ontain edges that are deleted at the end.I Claim: XS ative in it.i jÆF 0(S)j � 2 �#ative sets in iteration iI Shrink onneted omponents of F ! H 0 (S beomes nodevS). Nodes vS steming from ative uts S are ative nodes,others are inative nodesF inative Sative S F 0I H 0 is a forest. Degrees are preserved. 221 / 292



The main analysis (2)I Consider an intermediate iteration i with intermediate F .I Remark: F 0nF might ontain edges that are added laterFnF 0 might ontain edges that are deleted at the end.I Claim: XS ative in it.i jÆF 0(S)j � 2 �#ative sets in iteration iI Shrink onneted omponents of F ! H 0 (S beomes nodevS). Nodes vS steming from ative uts S are ative nodes,others are inative nodesative vS inative vSF 0H 0 :
I H 0 is a forest. Degrees are preserved. 222 / 292



The main analysis (2)
ative vS inative vSF 0H 0 :

I Consider non-singleton leaf vS . Edge to vS was not deleted.Hene f(S) = 1. But then S was ative (sine S is aonneted omponent of F at iteration i).I Average degree over all nodes in a forest is � 2 (sine #edges � # nodes) and eah edge ontributes at most 2 tothe degrees.I Inative nodes are inner nodes of degree � 2, hene averagedegree of ative nodes � average degree � 2. 223 / 292



Deleting redundant edges is ruial
s1 t1v1: : :

vn 41111 1 1 11 1 2
Observation: Without the pruning step at the end of thealgorithm, the solution would ost n+ 4 instead of 4. 224 / 292



ConlusionTheoremThe primal dual algorithm produes a 2-approximation in timeO(n2 logn).Remark: The algorithm works whenever the requirementfuntion f : 2V ! f0; 1g is proper, that meansI f(V ) = 0I f(S) = f(V nS) (symmetry)I If A;B � V are disjoint and f(A [B) = 1 then f(A) = 1or f(B) = 1.Note: Funtion f for Steiner Forest is proper.
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State of the artI There is no 9695 -approximation algorithm unless NP = P(same ratio as for the speial ase of Steiner tree).I There is still no better than 2-approximation known.I The integrality gap of the onsidered LP is in fat exatly2.I There is also no other LP formulation known, whih mighthave a smaller gap.
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Faility LoationProblem: Faility LoationI Given: Failities F , ities C, opening ost fi for everyfaility i. Metri ost ij for onneting ity j to faility i.I Find: Set of failities I and an assignment � : C ! I ofities to opened failities, minimizing the total ost:OPT = minI�F;�:C!InXi2I fi +Xj2C �(j);jo
j i fiij
C F I Remark: Without the metriassumption, the problembeomes �(logn)-hard.I We assume w.l.o.g. ij ; fi 2 Z+ 228 / 292



Faility LoationProblem: Faility LoationI Given: Failities F , ities C, opening ost fi for everyfaility i. Metri ost ij for onneting ity j to faility i.I Find: Set of failities I and an assignment � : C ! I ofities to opened failities, minimizing the total ost:OPT = minI�F;�:C!InXi2I fi +Xj2C �(j);jo
j i fiij
C F I Remark: Without the metriassumption, the problembeomes �(logn)-hard.I We assume w.l.o.g. ij ; fi 2 Z+ 229 / 292



The primal dual pairPrimal LP: minXi;j ijxij +Xi2F fiyiPi2F xij � 1 8j 2 Cxij � yi 8i 2 F 8j 2 Cxij � 0 8i 2 F 8j 2 Cyi � 0 8i 2 FDual LP: maxXj2C �j�j � ij + �ij 8i 2 F 8j 2 CPj2C �ij � fi 8i 2 F�j � 0 8j 2 C�ij � 0 8i 2 F 8j 2 CIntuition:I �j is the amount that ity j "pays" in total.I �ij is what ity j "pays" to open faility i. 230 / 292



The algorithm - Phase 1:(1) Initially all ities are unonneted(2) � := 0; � := 0; Ft := ;(3) WHILE not all ities are onneted DO(4) FOR ALL unonneted ities j DO(5) Inrease �j (by 1 per time unit)(6) For tight edges �j = ij + �ij inrease also �ij(7) IF Pj �ij = fi (new) THEN(8) open faility i temporarily (Ft := Ft [ fig)(9) FOR ALL ities j where edge (i; j) is tight DO(10) onnet ity to faility i(11) faility i is onnetion witness of j: w(j) := iPhase 2:(1) Let H = (Ft; E0) with (i; i0) 2 E0 if 9j 2 C : �ij ; �i0j > 0(2) Open a maximal independent set I � Ft(3) FOR ALL j 2 C DO(4) IF 9j 2 I : �ij > 0 THEN '(j) := i (j diretly onn.)(5) ELSE IF w(j) 2 I THEN '(j) := w(j) (j diretly onn.)(6) ELSE '(j) := a neighbour of w(j) in H (j indir. onn.)231 / 292



Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 0�1 = 0�2 = 0�3 = 0�4 = 0 232 / 292



Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 1�1 = 1�2 = 1�3 = 1�4 = 1

� = 0� = 0� = 0
� = 0

233 / 292



Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 2�1 = 2�2 = 2�3 = 2�4 = 2

� = 1� = 1� = 1
� = 1
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Example:
111013531105 33

C F f1 = 4 temp. opened
f2 = 5
f3 = 2

Phase 1 - Time: 3onn.: w(1) = 1; �1 = 3onn.: w(2) = 1; �2 = 3onn.: w(3) = 1; �3 = 3�4 = 3

� = 2� = 2� = 2
� = 2� = 0

� = 0� = 0 235 / 292



Example:
111013531105 33

C F f1 = 4 temp. opened
f2 = 5 temp. opened
f3 = 2

Phase 1 - Time: 4onn.: w(1) = 1; �1 = 3onn.: w(2) = 1; �2 = 3onn.: w(3) = 1; �3 = 3onn.: w(4) = 2; �4 = 4

� = 2� = 2� = 2
� = 2� = 0

� = 1� = 1 236 / 292



Example: C F f1 = 4 temp. opened
f2 = 5 temp. opened
f3 = 2

Phase 2: Graph H
H
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Example: C F

f3 = 2

Phase 2: The solution2 I (faility opened)
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AnalysisTheoremOne has Pj2C '(j);j +Pi2I fi � 3Pj2C �j.We aount the dual "payments"�fj := payment for opening := (�'(j);j if j diretly onneted0 if j is indiretly onn.�j := payment for onnetion := ('(j);j if j diretly onneted�j if j is indiretly onn.Claim: �j = �fj + �j .I For indiretly onneted ities: learI For diretly onneted ities: �j = '(j);j + �'(j);j beauseedge (�(j); j) was tight. 239 / 292



Bounding the opening ostsLemmaThe dual pries pay for the opening ost, i.e.Xi2I fi =Xj2C �fj :I A faility i 2 I was temporarily opened beausePj �ij = fiI All j with �ij > 0 must be diretly onneted to i beause:We opened an independent set in H in Phase 2, hene anyi0 2 Ft with �i0j > 0 is not in II Thus all j with �ij > 0Xj:�(j)=i�fj = Xj:�ij>0�ij i temp opened= fiI The laim follows fromXj2C �fj =Xi2I Xj:�(j)=i�fj =Xi2I fi j i 2 Ii0 =2 I�ij > 0�i0j > 0 2 H
240 / 292



Bounding the onnetion ostLemmaFor any ity j 2 C one has '(j);j � 3�j.I If j diretly onneted, then even �j = '(j);j . Next,suppose j is indiretly onneted.I Then there is an edge (w(j); �(j)) 2 H (sine j wasindiretly onneted).I This edge implies that there is a j0 2 C with�'(j);j0 > 0; �w(j);j0 > 0.jj0 w(j) =2 I�(j) 2 I
tight: �j � w(j);j�w(j);j0 > 0��(i);j0 > 0 2 H 241 / 292



Bounding the onnetion ost (2)
I Event �w(j);j > 0 onlyhappened if �j � w(j);j. Forthe same reason: �j0 � w(j);j0and �j0 � �(j);j0 .

jj0 w(j) =2 I�(j) 2 I
tight: �j � w(j);j�w(j);j0 > 0��(i);j0 > 0 2 HI Claim �j � �j0: Consider the time t, when w(j) wastemporarily opened. Sine w(j) is onnetion witness of j,�j � t. At this time t, it was �w(j);j0 > 0 (sine if�w(j);j0 = 0 at that time, then �w(j);j0 = 0 forever). At thelatest at this time t, also j0 was onneted and �j0 stoppedgrowing. Hene �j � t � �j0 .I Then�(j);j metri ineq.� w(j);j| {z }��j + w(j);j0| {z }��j0��j + �(j);j0| {z }��j0��j � 3�j = 3�j 242 / 292



ConlusionTheoremThe algorithm produes a 3-approximation in timeO(m � log(m)), where m = jCj � jF j is the number of edges.State of the art:Theorem (Byrka '07)There is a 1:499-apx for Faility Loation.I The integrality gap for the onsidered LP lies in[1:463; 1:499℄.TheoremThere is no polynomial time 1:463-apx for Faility Loationunless NP � DTIME(nO(log log n)). 243 / 292


