Part 20 Introduction into Primal dual Algorithms

SOURCE: Approximation Algorithms (Vazirani, Springer Press)

A generic problem

Situation: We want to approximate a problem, which (in many cases) is of the form

$$\min \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \ \forall i = 1, \dots, m$$

$$x_j \in \{0, 1\} \quad \forall j = 1, \dots, n$$

Examples so far: SET COVER, STEINER TREE, VERTEX COVER,...

A primal-dual pair

Primal "covering" LP:

$$\min \sum_{j=1}^{n} c_j x_j \qquad (P)$$
$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad \forall i = 1, \dots, m$$
$$x_j \geq 0 \quad \forall j = 1, \dots, n$$

Dual "packing" LP:

$$\max \sum_{i=1}^{m} b_i y_i \qquad (D)$$
$$\sum_{i=1}^{m} a_{ij} y_i \leq c_j \quad \forall j = 1, \dots, n$$
$$y_i \geq 0 \quad \forall i = 1, \dots, m$$

A generic Approximation algorithm

Generic primal-dual algorithm:

(1)
$$x := 0, y = 0$$

- (2) WHILE x not feasible DO
 - (3) Increase dual variables in a suitable way until some dual constraint j becomes tight
 - (4) Set $x_j := 1$
- (5) RETURN x

Generic analysis:

- Show: At the end x is integer and feasible for primal
- Show: At the end y is feasible for dual

Show:
$$\sum_{j=1}^{n} c_j x_j \leq \alpha \cdot \sum_{i=1}^{m} b_i y_i$$
 (α is the apx factor)
dual solutions
 $\sum_{i=1}^{m} b_i y_i$ OPT_f OPT $\sum_{j=1}^{n} c_j x_j$
 \leq factor of α

Relaxed complementary slackness

Lemma

Let $\alpha, \beta \geq 1$. Let x, y be primal/dual feasible solutions obtained by the algorithm. If

(A) Relaxed primal compl. slack.: $x_j > 0 \Rightarrow c_j \leq \alpha \sum_{i=1}^m a_{ij} y_i$ (B) Relaxed dual compl. slack.: $y_i > 0 \Rightarrow \sum_{j=1}^n a_{ij} x_j \leq \beta \cdot b_i$ Then $APX \leq \alpha \cdot \beta \cdot OPT_f$.

 \blacktriangleright Let APX be the cost of the produced solution. Then

$$APX = \sum_{j=1}^{n} c_j x_j \stackrel{(A)}{\leq} \sum_{j=1}^{n} x_j \left(\alpha \sum_{i=1}^{m} a_{ij} y_i \right) = \alpha \sum_{i=1}^{m} y_i \sum_{j=1}^{n} a_{ij} x_j$$

$$\stackrel{(B)}{\leq} \alpha \beta \sum_{i=1}^{m} y_i b_i \stackrel{y \text{ dual feasible}}{\leq} \alpha \beta \cdot OPT_f \square$$

Part 21 Steiner Forest

SOURCE: Approximation Algorithms (Vazirani, Springer Press)

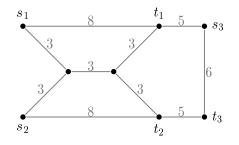
Steiner Forest

Problem: Steiner Forest

• <u>Given</u>: Undirected graph G = (V, E), edge cost $c : E \to \mathbb{Q}_+$, terminal pairs $(s_1, t_1), \ldots, (s_k, t_k)$

• <u>Find</u>: Minimum cost subgraph F connecting all terminal pairs:

$$OPT = \min_{F \subseteq E} \left\{ \sum_{e \in F} c(e) \mid \forall i = 1, \dots, k : F \text{ connects } s_i \text{ and } t_i \right\}$$



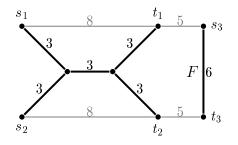
Steiner Forest

Problem: Steiner Forest

• <u>Given</u>: Undirected graph G = (V, E), edge cost $c : E \to \mathbb{Q}_+$, terminal pairs $(s_1, t_1), \ldots, (s_k, t_k)$

• <u>Find</u>: Minimum cost subgraph F connecting all terminal pairs:

$$OPT = \min_{F \subseteq E} \left\{ \sum_{e \in F} c(e) \mid \forall i = 1, \dots, k : F \text{ connects } s_i \text{ and } t_i \right\}$$



The LP relaxation

▶ For any $S \subseteq V$ define cut requirement

$$f(S) = \begin{cases} 1 & \text{if } \exists i : |S \cap \{s_i, t_i\}| = 1\\ 0 & \text{otherwise} \end{cases}$$

Primal LP relaxation:

Dual LP:

$$\min \sum_{e \in E} c_e x_e \qquad (P)$$

$$\sum_{e \in \delta(S)} x_e \geq f(S) \quad \forall S \subseteq V$$

$$x_e \geq 0 \quad \forall e \in E$$

$$\max \sum_{S \subseteq V} f(S) y_S \qquad (D)$$

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad \forall e \in E$$

$$y_S \geq 0 \quad \forall S \subseteq V$$

207 / 292

Preliminaries

- For $F \subseteq E, S \subseteq V$: $\delta_F(S) = \{\{u, v\} \in F \mid u \in S, v \notin S\}$
- ► A cut $S \subseteq V$ is violated by $F \subseteq E$, if there is a terminal pair (s_i, t_i) with $|\{s_i, t_i\} \cap S| = 1$ but $\delta_F(S) = \emptyset$
- A cut S is active w.r.t. F, if S is violated and minimal (i.e. there is no subset S' ⊂ S that is also violated).
- An edge e is tight w.r.t. a dual solution (y_S)_S if ∑_{S:e∈δ(S)} y_S = c_e
 (i.e. if the dual constraint of c_e satisfied with equality).

The algorithm

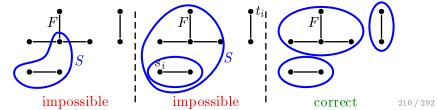
- (1) $F := \emptyset, y := \mathbf{0}$
- (2) WHILE \exists violated cut DO
 - (3) Increase simultaneously y_S for all active cuts S, until some edge e gets tight
 - (4) Add the tight edge e to F
- (5) Compute an arbitrary minimal feasible solution $F'\subseteq F$

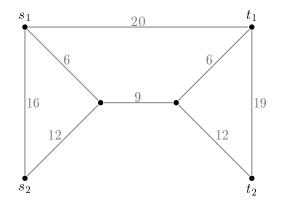
The active cuts

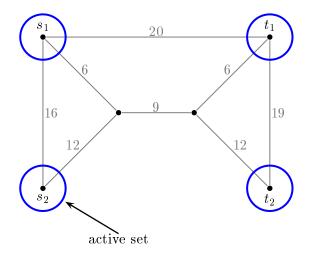
Lemma

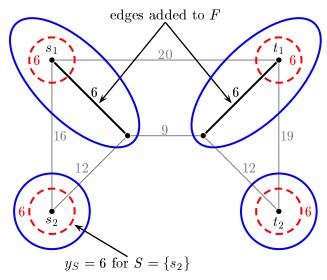
The active cuts w.r.t. $F \subseteq E$ are connected components of F.

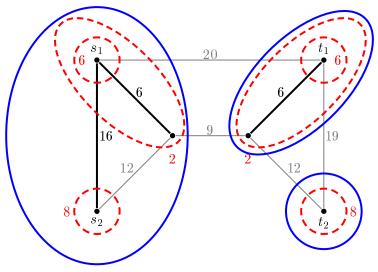
- Consider active cut S (S minimal, $f(S) = 1, \delta_F(S) = \emptyset$).
- ► $\delta_F(S) = \emptyset \Rightarrow$ connected components of F are either fully contained in S or fully outside
- ▶ S is violated, hence there is a pair $|\{s_i, t_i\} \cap S| = 1$
- ▶ The connected component of F inside S that contains s_i is also violated. Hence, S is a single connected component (or we would have a contradiction).

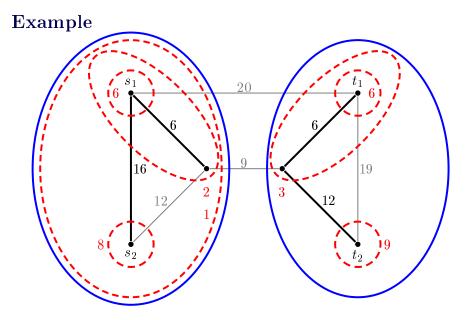


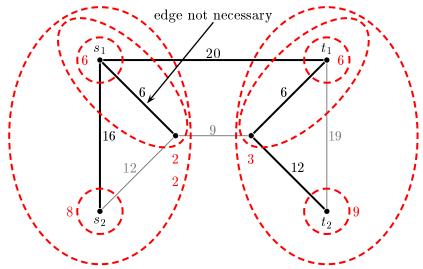




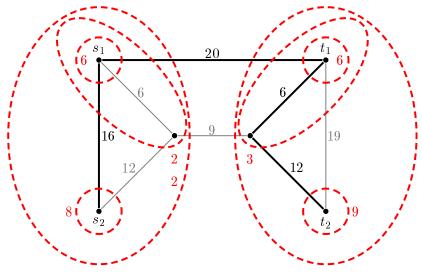








F at the end of WHILE loop



Solution F'

Feasibility

Lemma

F' is a feasible solution.

- Let F be the solution at the end of the WHILE loop.
- F is feasible, because there is no violated cut.
- ▶ We do not delete necessary edges, hence F' is also feasible.

Lemma

y is dual feasible, i.e.
$$\sum_{S:e \in \delta(S)} y_S \leq c_e$$
 for all $e \in E$.

- Each time that an edge e gets tight (i.e. $\sum_{S:e \in \delta(S)} y_S = c_e$), we add it to F.
- We increase y_S only for violated cuts not for cuts containing edges of F.

Lemma

Let y be the dual solution at the end of the algorithm. Then

$$APX = \sum_{e \in F'} c_e \le 2 \sum_{S \subseteq V} y_S \le 2 \cdot OPT_f.$$

$$\sum_{e \in F'} c_e \stackrel{e \text{ tight}}{=} \sum_{e \in F'} \left(\sum_{S: e \in \delta(S)} y_S \right) = \sum_{S \subseteq V} |\delta_{F'}(S)| \cdot y_S \stackrel{(*)}{\leq} \sum_{S \subseteq V} 2y_S$$

• Consider any iteration *i*. Let α be the amount by which the dual variables y_S were increased. We show (*) by proving

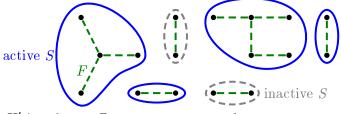
$$\alpha \cdot \sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \le 2 \cdot \alpha \cdot \# \text{active sets in it}, i$$

- Consider an intermediate iteration i with intermediate F.
- ▶ **Remark:** $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.

▶ <u>Claim:</u>

 $\sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \le 2 \cdot \# \text{active sets in iteration } i$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes



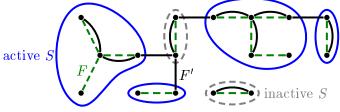
• H' is a forest. Degrees are preserved.

- Consider an intermediate iteration i with intermediate F.
- ▶ **Remark:** $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.

▶ <u>Claim:</u>

 $\sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \le 2 \cdot \# \text{active sets in iteration } i$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes



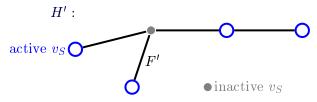
• H' is a forest. Degrees are preserved.

- Consider an intermediate iteration i with intermediate F.
- ▶ **Remark:** $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.

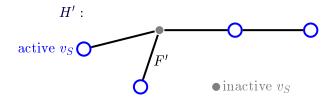
▶ <u>Claim:</u>

 $\sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \le 2 \cdot \# \text{active sets in iteration } i$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes

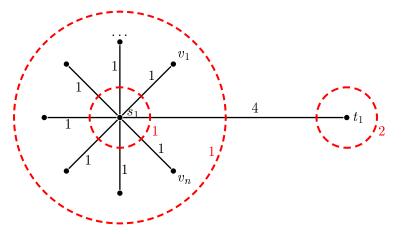


• H' is a forest. Degrees are preserved.



- Consider non-singleton leaf v_S . Edge to v_S was not deleted. Hence f(S) = 1. But then S was active (since S is a connected component of F at iteration i).
- ► Average degree over all nodes in a forest is ≤ 2 (since # edges ≤ # nodes) and each edge contributes at most 2 to the degrees.
- ▶ Inactive nodes are inner nodes of degree ≥ 2, hence average degree of active nodes ≤ average degree ≤ 2.

Deleting redundant edges is crucial



Observation: Without the pruning step at the end of the algorithm, the solution would cost n + 4 instead of 4.

Conclusion

Theorem

The primal dual algorithm produces a 2-approximation in time $O(n^2 \log n)$.

Remark: The algorithm works whenever the requirement function $f: 2^V \to \{0, 1\}$ is proper, that means

$$\blacktriangleright f(V) = 0$$

•
$$f(S) = f(V \setminus S)$$
 (symmetry)

• If $A, B \subseteq V$ are disjoint and $f(A \cup B) = 1$ then f(A) = 1or f(B) = 1.

Note: Function f for STEINER FOREST is proper.

State of the art

- There is no $\frac{96}{95}$ -approximation algorithm unless $\mathbf{NP} = \mathbf{P}$ (same ratio as for the special case of STEINER TREE).
- ▶ There is still no better than 2-approximation known.
- The integrality gap of the considered LP is in fact exactly 2.
- ▶ There is also no other LP formulation known, which might have a smaller gap.

PART 22 FACILITY LOCATION

SOURCE: Approximation Algorithms (Vazirani, Springer Press)

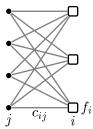
Facility Location

Problem: FACILITY LOCATION

F

- <u>Given</u>: Facilities F, cities C, opening cost f_i for every facility i. Metric cost c_{ij} for connecting city j to facility i.
- ▶ Find: Set of facilities I and an assignment $\phi : C \to I$ of cities to opened facilities, minimizing the total cost:

$$OPT = \min_{I \subseteq F, \phi: C \to I} \left\{ \sum_{i \in I} f_i + \sum_{j \in C} c_{\phi(j), j} \right\}$$



• **Remark:** Without the metric assumption, the problem becomes $\Theta(\log n)$ -hard.

• We assume w.l.o.g.
$$c_{ij}, f_i \in \mathbb{Z}_+$$

Facility Location

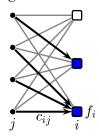
Problem: FACILITY LOCATION

F

- <u>Given</u>: Facilities F, cities C, opening cost f_i for every facility i. Metric cost c_{ij} for connecting city j to facility i.
- ▶ Find: Set of facilities I and an assignment $\phi : C \to I$ of cities to opened facilities, minimizing the total cost:

$$OPT = \min_{I \subseteq F, \phi: C \to I} \left\{ \sum_{i \in I} f_i + \sum_{j \in C} c_{\phi(j), j} \right\}$$

C



- ► Remark: Without the metric assumption, the problem becomes Θ(log n)-hard.
- ▶ We assume w.l.o.g. $c_{ij}, f_i \in \mathbb{Z}_+$

The primal dual pair **Primal LP:** $\min\sum_{i,j} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i$ Dual LP: $\max \sum \alpha_j$ $i \in C$ $\begin{array}{rrrr} \alpha_{j} & \leq & c_{ij} + \beta_{ij} & \forall i \in F \; \forall j \in C \\ \sum_{j \in C} \beta_{ij} & \leq & f_{i} & \forall i \in F \\ \alpha_{j} & \geq & 0 & \forall j \in C \\ \beta_{ij} & \geq & 0 & \forall i \in F \; \forall j \in C \end{array}$

Intuition:

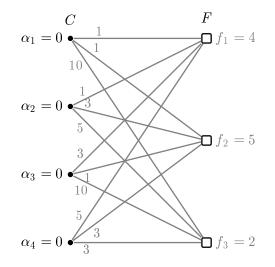
- α_i is the amount that city *j* "pays" in total.
- β_{ij} is what city j "pays" to open facility i.

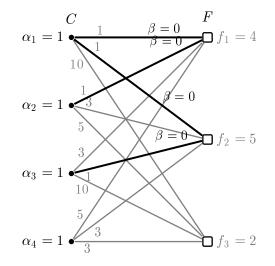
The algorithm - Phase 1:

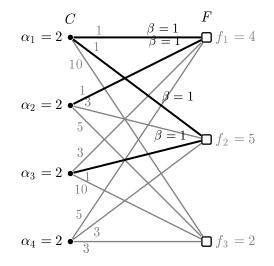
(1) Initially all cities are unconnected (2) $\alpha := \mathbf{0}, \beta := \mathbf{0}, F_t := \emptyset$ WHILE not all cities are connected DO (3)(4)FOR ALL unconnected cities j DO (5)Increase α_i (by 1 per time unit) (6)For tight edges $\alpha_i = c_{ij} + \beta_{ij}$ increase also β_{ij} IF $\sum_{i} \beta_{ij} = f_i$ (new) THEN (7)(8) open facility i temporarily $(F_t := F_t \cup \{i\})$ FOR ALL cities j where edge (i, j) is tight DO (9)(10)connect city to facility i(11)facility i is connection witness of j: w(j) := i

Phase 2:

- (1) Let $H = (F_t, E')$ with $(i, i') \in E'$ if $\exists j \in C : \beta_{ij}, \beta_{i'j} > 0$
- (2) Open a maximal independent set $I \subseteq F_t$
- (3) FOR ALL $j \in C$ DO
- (4) IF $\exists j \in I : \beta_{ij} > 0$ THEN $\varphi(j) := i$ (j directly conn.)
- (5) ELSE IF $w(j) \in I$ THEN $\varphi(j) := w(j)$ (j directly conn.)
- (6) ELSE $\varphi(j) :=$ a neighbour of w(j) in H (j indir. conn.)_{231/292}



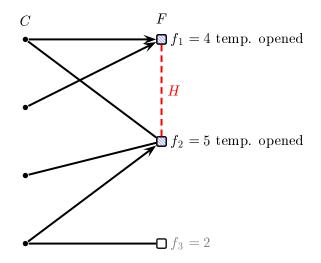




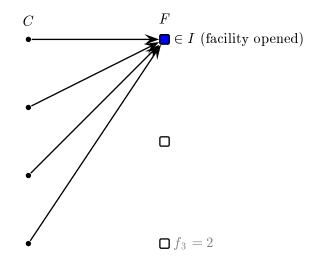
conn.:
$$w(1) = 1$$
, $\alpha_1 = 3$
 $w(1) = 1$, $\alpha_1 = 3$
 $\alpha_1 = 3$
 $\alpha_1 = 3$
 $\alpha_2 = 3$
 $\alpha_4 = 3$
 $\alpha_1 = 3$
 $\beta = 2$
 $\beta = 0$
 β

conn.:
$$w(1) = 1$$
, $\alpha_1 = 3$
 $w(1) = 1$, $\alpha_1 = 3$
 $\alpha_1 = 3$
 $\alpha_1 = 3$
 $\beta = 2$
 $\beta = 1$
 $\beta = 1$
 $\beta = 1$
 $f_3 = 2$

Phase 2: Graph H



Phase 2: The solution



Analysis

Theorem

One has
$$\sum_{j \in C} c_{\varphi(j),j} + \sum_{i \in I} f_i \leq 3 \sum_{j \in C} \alpha_j$$
.

We account the dual "payments"

$$\begin{split} \alpha_j^f &:= \text{payment for opening} \quad := \quad \begin{cases} \beta_{\varphi(j),j} & \text{if } j \text{ directly connected} \\ 0 & \text{if } j \text{ is indirectly conn.} \end{cases} \\ \alpha_j^c &:= \text{payment for connection} \quad := \quad \begin{cases} c_{\varphi(j),j} & \text{if } j \text{ directly connected} \\ \alpha_j & \text{if } j \text{ is indirectly conn.} \end{cases} \end{split}$$

Claim:
$$\alpha_j = \alpha_j^f + \alpha_j^c$$
.

- ▶ For indirectly connected cities: clear
- ► For directly connected cities: $\alpha_j = c_{\varphi(j),j} + \beta_{\varphi(j),j}$ because edge $(\phi(j), j)$ was tight.

Bounding the opening costs

Lemma

The dual prices pay for the opening cost, i.e.

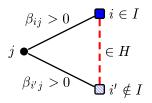
$$\sum_{i \in I} f_i = \sum_{j \in C} \alpha_j^f.$$

- A facility $i \in I$ was temporarily opened because $\sum_{i} \beta_{ij} = f_i$
- All j with $\beta_{ij} > 0$ must be directly connected to i because: We opened an independent set in H in Phase 2, hence any $i' \in F_t$ with $\beta_{i'j} > 0$ is not in I

• Thus all
$$j$$
 with $\beta_{ij} > 0$

$$\sum_{j:\phi(j)=i} \alpha_j^f = \sum_{j:\beta_{ij}>0} \beta_{ij} \stackrel{i \text{ temp opened}}{=} f_i$$

► The claim follows from $\sum_{j \in C} \alpha_j^f = \sum_{i \in I} \sum_{j: \phi(j)=i} \alpha_j^f = \sum_{i \in I} f_i \quad \Box$

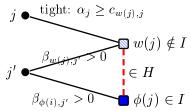


Bounding the connection cost

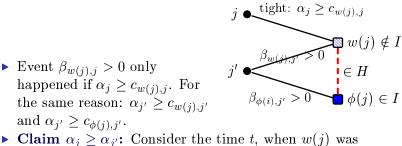
Lemma

For any city $j \in C$ one has $c_{\varphi(j),j} \leq 3\alpha_j^c$.

- ► If j directly connected, then even $\alpha_j^c = c_{\varphi(j),j}$. Next, suppose j is indirectly connected.
- ► Then there is an edge $(w(j), \phi(j)) \in H$ (since j was indirectly connected).
- ► This edge implies that there is a $j' \in C$ with $\beta_{\varphi(j),j'} > 0, \beta_{w(j),j'} > 0.$



Bounding the connection cost (2)



- ► Claim $\alpha_j \ge \alpha_{j'}$: Consider the time t, when w(j) was temporarily opened. Since w(j) is connection witness of j, $\alpha_j \ge t$. At this time t, it was $\beta_{w(j),j'} > 0$ (since if $\beta_{w(j),j'} = 0$ at that time, then $\beta_{w(j),j'} = 0$ forever). At the latest at this time t, also j' was connected and $\alpha_{j'}$ stopped growing. Hence $\alpha_j \ge t \ge \alpha_{j'}$.
- ▶ Then

$$c_{\phi(j),j} \stackrel{\text{metric ineq.}}{\leq} \underbrace{c_{w(j),j}}_{\leq \alpha_j} + \underbrace{c_{w(j),j'}}_{\leq \alpha_{j'} \leq \alpha_j} + \underbrace{c_{\phi(j),j'}}_{\leq \alpha_{j'} \leq \alpha_j} \leq 3\alpha_j = 3\alpha_j^c \quad \Box$$

Conclusion

Theorem

The algorithm produces a 3-approximation in time $O(m \cdot \log(m))$, where $m = |C| \cdot |F|$ is the number of edges.

State of the art:

Theorem (Byrka '07)

There is a 1.499-apx for FACILITY LOCATION.

▶ The integrality gap for the considered LP lies in [1.463, 1.499].

Theorem

There is no polynomial time 1.463-apx for FACILITY LOCATION unless $\mathbf{NP} \subseteq \mathbf{DTIME}(n^{O(\log \log n)}).$