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A generi
 problemSituation: We want to approximate a problem, whi
h (inmany 
ases) is of the formmin nXj=1 
jxjnXj=1 aijxj � bi 8i = 1; : : : ;mxj 2 f0; 1g 8j = 1; : : : ; nExamples so far: Set Cover, Steiner tree, VertexCover,: : :
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A primal-dual pairPrimal "
overing" LP:min nXj=1 
jxj (P )nXj=1 aijxj � bi 8i = 1; : : : ;mxj � 0 8j = 1; : : : ; nDual "pa
king" LP:max mXi=1 biyi (D)mXi=1 aijyi � 
j 8j = 1; : : : ; nyi � 0 8i = 1; : : : ;m 201 / 292



A generi
 Approximation algorithmGeneri
 primal-dual algorithm:(1) x := 0; y = 0(2) WHILE x not feasible DO(3) In
rease dual variables in a suitable way until some dual
onstraint j be
omes tight(4) Set xj := 1(5) RETURN xGeneri
 analysis:I Show: At the end x is integer and feasible for primalI Show: At the end y is feasible for dualI Show: Pnj=1 
jxj � � �Pmi=1 biyi (� is the apx fa
tor)0 Pmi=1 biyi OPTf OPT Pnj=1 
jxj� fa
tor of �dual solutions primal solutions 202 / 292



Relaxed 
omplementary sla
knessLemmaLet �; � � 1. Let x; y be primal/dual feasible solutions obtainedby the algorithm. If(A) Relaxed primal 
ompl. sla
k.: xj > 0) 
j � �Pmi=1 aijyi(B) Relaxed dual 
ompl. sla
k.: yi > 0)Pnj=1 aijxj � � � biThen APX � � � � �OPTf .I Let APX be the 
ost of the produ
ed solution. ThenAPX = nXj=1 
jxj (A)� nXj=1 xj�� mXi=1 aijyi� = � mXi=1 yi nXj=1 aijxj(B)� �� mXi=1 yibi y dual feasible� �� � OPTf 203 / 292
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Steiner ForestProblem: Steiner ForestI Given: Undire
ted graph G = (V;E), edge 
ost
 : E ! Q+ , terminal pairs (s1; t1); : : : ; (sk; tk)I Find: Minimum 
ost subgraph F 
onne
ting all terminalpairs:OPT = minF�EnXe2F 
(e) j 8i = 1; : : : ; k : F 
onne
ts si and tio
s2 t2
s1 t1 s3

t333 3 33 68
8

5
5 205 / 292



Steiner ForestProblem: Steiner ForestI Given: Undire
ted graph G = (V;E), edge 
ost
 : E ! Q+ , terminal pairs (s1; t1); : : : ; (sk; tk)I Find: Minimum 
ost subgraph F 
onne
ting all terminalpairs:OPT = minF�EnXe2F 
(e) j 8i = 1; : : : ; k : F 
onne
ts si and tio
s2 t2
s1 t1 s3

t3
8
8

5
533 3 3 3 6F 206 / 292



The LP relaxationI For any S � V de�ne 
ut requirementf(S) = (1 if 9i : jS \ fsi; tigj = 10 otherwisePrimal LP relaxation:minXe2E 
exe (P )Xe2Æ(S) xe � f(S) 8S � Vxe � 0 8e 2 EDual LP: maxXS�V f(S)yS (D)XS:e2Æ(S) yS � 
e 8e 2 EyS � 0 8S � V 207 / 292



PreliminariesI For F � E;S � V : ÆF (S) = ffu; vg 2 F j u 2 S; v =2 SgI A 
ut S � V is violated by F � E, if there is a terminalpair (si; ti) with jfsi; tig \ Sj = 1 but ÆF (S) = ;I A 
ut S is a
tive w.r.t. F , if S is violated and minimal(i.e. there is no subset S0 � S that is also violated).I An edge e is tight w.r.t. a dual solution (yS)S ifPS:e2Æ(S) yS = 
e(i.e. if the dual 
onstraint of 
e satis�ed with equality).
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The algorithm(1) F := ;, y := 0(2) WHILE 9 violated 
ut DO(3) In
rease simultaneously yS for all a
tive 
uts S, until someedge e gets tight(4) Add the tight edge e to F(5) Compute an arbitrary minimal feasible solution F 0 � F

209 / 292



The a
tive 
utsLemmaThe a
tive 
uts w.r.t. F � E are 
onne
ted 
omponents of F .I Consider a
tive 
ut S (S minimal, f(S) = 1, ÆF (S) = ;).I ÆF (S) = ; ) 
onne
ted 
omponents of F are either fully
ontained in S or fully outsideI S is violated, hen
e there is a pair jfsi; tig \ Sj = 1I The 
onne
ted 
omponent of F inside S that 
ontains si isalso violated. Hen
e, S is a single 
onne
ted 
omponent (orwe would have a 
ontradi
tion).F Simpossible si tiF Simpossible F
orre
t 210 / 292



Example

s2 t2
s1 t1612 9 612

20
16 19
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Example

s2 t2
s1 t1612 9 612

20
16 19

a
tive set 212 / 292



Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

6 6yS = 6 for S = fs2g

edges added to F
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 2 8
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 21 3 9
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 3 92
F at the end of WHILE loop

edge not ne
essary
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Example

s2 t2
s1 t1612 9 6 12

20
16 196 6

8 2 3 92
Solution F 0 217 / 292



FeasibilityLemmaF 0 is a feasible solution.I Let F be the solution at the end of the WHILE loop.I F is feasible, be
ause there is no violated 
ut.I We do not delete ne
essary edges, hen
e F 0 is alsofeasible.Lemmay is dual feasible, i.e. PS:e2Æ(S) yS � 
e for all e 2 E.I Ea
h time that an edge e gets tight (i.e.PS:e2Æ(S) yS = 
e), we add it to F .I We in
rease yS only for violated 
uts { not for 
uts
ontaining edges of F . 218 / 292



The main analysis (1)LemmaLet y be the dual solution at the end of the algorithm. ThenAPX = Xe2F 0 
e � 2XS�V yS � 2 �OPTf :Xe2F 0 
e e tight= Xe2F 0 � XS:e2Æ(S) yS� = XS�V jÆF 0(S)j � yS (�)� XS�V 2ySI Consider any iteration i. Let � be the amount by whi
h thedual variables yS were in
reased. We show (*) by proving� � XS a
tive in it.i jÆF 0(S)j � 2 � � �#a
tive sets in it.i 219 / 292



The main analysis (2)I Consider an intermediate iteration i with intermediate F .I Remark: F 0nF might 
ontain edges that are added laterFnF 0 might 
ontain edges that are deleted at the end.I Claim: XS a
tive in it.i jÆF 0(S)j � 2 �#a
tive sets in iteration iI Shrink 
onne
ted 
omponents of F ! H 0 (S be
omes nodevS). Nodes vS steming from a
tive 
uts S are a
tive nodes,others are ina
tive nodesF ina
tive Sa
tive SI H 0 is a forest. Degrees are preserved. 220 / 292
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The main analysis (2)I Consider an intermediate iteration i with intermediate F .I Remark: F 0nF might 
ontain edges that are added laterFnF 0 might 
ontain edges that are deleted at the end.I Claim: XS a
tive in it.i jÆF 0(S)j � 2 �#a
tive sets in iteration iI Shrink 
onne
ted 
omponents of F ! H 0 (S be
omes nodevS). Nodes vS steming from a
tive 
uts S are a
tive nodes,others are ina
tive nodesa
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tive vSF 0H 0 :
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The main analysis (2)
a
tive vS ina
tive vSF 0H 0 :

I Consider non-singleton leaf vS . Edge to vS was not deleted.Hen
e f(S) = 1. But then S was a
tive (sin
e S is a
onne
ted 
omponent of F at iteration i).I Average degree over all nodes in a forest is � 2 (sin
e #edges � # nodes) and ea
h edge 
ontributes at most 2 tothe degrees.I Ina
tive nodes are inner nodes of degree � 2, hen
e averagedegree of a
tive nodes � average degree � 2. 223 / 292



Deleting redundant edges is 
ru
ial
s1 t1v1: : :

vn 41111 1 1 11 1 2
Observation: Without the pruning step at the end of thealgorithm, the solution would 
ost n+ 4 instead of 4. 224 / 292



Con
lusionTheoremThe primal dual algorithm produ
es a 2-approximation in timeO(n2 logn).Remark: The algorithm works whenever the requirementfun
tion f : 2V ! f0; 1g is proper, that meansI f(V ) = 0I f(S) = f(V nS) (symmetry)I If A;B � V are disjoint and f(A [B) = 1 then f(A) = 1or f(B) = 1.Note: Fun
tion f for Steiner Forest is proper.
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State of the artI There is no 9695 -approximation algorithm unless NP = P(same ratio as for the spe
ial 
ase of Steiner tree).I There is still no better than 2-approximation known.I The integrality gap of the 
onsidered LP is in fa
t exa
tly2.I There is also no other LP formulation known, whi
h mighthave a smaller gap.
226 / 292
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Fa
ility Lo
ationProblem: Fa
ility Lo
ationI Given: Fa
ilities F , 
ities C, opening 
ost fi for everyfa
ility i. Metri
 
ost 
ij for 
onne
ting 
ity j to fa
ility i.I Find: Set of fa
ilities I and an assignment � : C ! I of
ities to opened fa
ilities, minimizing the total 
ost:OPT = minI�F;�:C!InXi2I fi +Xj2C 
�(j);jo
j i fi
ij
C F I Remark: Without the metri
assumption, the problembe
omes �(logn)-hard.I We assume w.l.o.g. 
ij ; fi 2 Z+ 228 / 292



Fa
ility Lo
ationProblem: Fa
ility Lo
ationI Given: Fa
ilities F , 
ities C, opening 
ost fi for everyfa
ility i. Metri
 
ost 
ij for 
onne
ting 
ity j to fa
ility i.I Find: Set of fa
ilities I and an assignment � : C ! I of
ities to opened fa
ilities, minimizing the total 
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The primal dual pairPrimal LP: minXi;j 
ijxij +Xi2F fiyiPi2F xij � 1 8j 2 Cxij � yi 8i 2 F 8j 2 Cxij � 0 8i 2 F 8j 2 Cyi � 0 8i 2 FDual LP: maxXj2C �j�j � 
ij + �ij 8i 2 F 8j 2 CPj2C �ij � fi 8i 2 F�j � 0 8j 2 C�ij � 0 8i 2 F 8j 2 CIntuition:I �j is the amount that 
ity j "pays" in total.I �ij is what 
ity j "pays" to open fa
ility i. 230 / 292



The algorithm - Phase 1:(1) Initially all 
ities are un
onne
ted(2) � := 0; � := 0; Ft := ;(3) WHILE not all 
ities are 
onne
ted DO(4) FOR ALL un
onne
ted 
ities j DO(5) In
rease �j (by 1 per time unit)(6) For tight edges �j = 
ij + �ij in
rease also �ij(7) IF Pj �ij = fi (new) THEN(8) open fa
ility i temporarily (Ft := Ft [ fig)(9) FOR ALL 
ities j where edge (i; j) is tight DO(10) 
onne
t 
ity to fa
ility i(11) fa
ility i is 
onne
tion witness of j: w(j) := iPhase 2:(1) Let H = (Ft; E0) with (i; i0) 2 E0 if 9j 2 C : �ij ; �i0j > 0(2) Open a maximal independent set I � Ft(3) FOR ALL j 2 C DO(4) IF 9j 2 I : �ij > 0 THEN '(j) := i (j dire
tly 
onn.)(5) ELSE IF w(j) 2 I THEN '(j) := w(j) (j dire
tly 
onn.)(6) ELSE '(j) := a neighbour of w(j) in H (j indir. 
onn.)231 / 292



Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 0�1 = 0�2 = 0�3 = 0�4 = 0 232 / 292



Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 1�1 = 1�2 = 1�3 = 1�4 = 1

� = 0� = 0� = 0
� = 0
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Example:
111013531105 33

C F f1 = 4
f2 = 5
f3 = 2

Phase 1 - Time: 2�1 = 2�2 = 2�3 = 2�4 = 2

� = 1� = 1� = 1
� = 1
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Example:
111013531105 33

C F f1 = 4 temp. opened
f2 = 5
f3 = 2

Phase 1 - Time: 3
onn.: w(1) = 1; �1 = 3
onn.: w(2) = 1; �2 = 3
onn.: w(3) = 1; �3 = 3�4 = 3

� = 2� = 2� = 2
� = 2� = 0

� = 0� = 0 235 / 292



Example:
111013531105 33

C F f1 = 4 temp. opened
f2 = 5 temp. opened
f3 = 2

Phase 1 - Time: 4
onn.: w(1) = 1; �1 = 3
onn.: w(2) = 1; �2 = 3
onn.: w(3) = 1; �3 = 3
onn.: w(4) = 2; �4 = 4

� = 2� = 2� = 2
� = 2� = 0

� = 1� = 1 236 / 292



Example: C F f1 = 4 temp. opened
f2 = 5 temp. opened
f3 = 2

Phase 2: Graph H
H
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Example: C F

f3 = 2

Phase 2: The solution2 I (fa
ility opened)

238 / 292



AnalysisTheoremOne has Pj2C 
'(j);j +Pi2I fi � 3Pj2C �j.We a

ount the dual "payments"�fj := payment for opening := (�'(j);j if j dire
tly 
onne
ted0 if j is indire
tly 
onn.�
j := payment for 
onne
tion := (
'(j);j if j dire
tly 
onne
ted�j if j is indire
tly 
onn.Claim: �j = �fj + �
j .I For indire
tly 
onne
ted 
ities: 
learI For dire
tly 
onne
ted 
ities: �j = 
'(j);j + �'(j);j be
auseedge (�(j); j) was tight. 239 / 292



Bounding the opening 
ostsLemmaThe dual pri
es pay for the opening 
ost, i.e.Xi2I fi =Xj2C �fj :I A fa
ility i 2 I was temporarily opened be
ausePj �ij = fiI All j with �ij > 0 must be dire
tly 
onne
ted to i be
ause:We opened an independent set in H in Phase 2, hen
e anyi0 2 Ft with �i0j > 0 is not in II Thus all j with �ij > 0Xj:�(j)=i�fj = Xj:�ij>0�ij i temp opened= fiI The 
laim follows fromXj2C �fj =Xi2I Xj:�(j)=i�fj =Xi2I fi j i 2 Ii0 =2 I�ij > 0�i0j > 0 2 H
240 / 292



Bounding the 
onne
tion 
ostLemmaFor any 
ity j 2 C one has 
'(j);j � 3�
j.I If j dire
tly 
onne
ted, then even �
j = 
'(j);j . Next,suppose j is indire
tly 
onne
ted.I Then there is an edge (w(j); �(j)) 2 H (sin
e j wasindire
tly 
onne
ted).I This edge implies that there is a j0 2 C with�'(j);j0 > 0; �w(j);j0 > 0.jj0 w(j) =2 I�(j) 2 I
tight: �j � 
w(j);j�w(j);j0 > 0��(i);j0 > 0 2 H 241 / 292



Bounding the 
onne
tion 
ost (2)
I Event �w(j);j > 0 onlyhappened if �j � 
w(j);j. Forthe same reason: �j0 � 
w(j);j0and �j0 � 
�(j);j0 .

jj0 w(j) =2 I�(j) 2 I
tight: �j � 
w(j);j�w(j);j0 > 0��(i);j0 > 0 2 HI Claim �j � �j0: Consider the time t, when w(j) wastemporarily opened. Sin
e w(j) is 
onne
tion witness of j,�j � t. At this time t, it was �w(j);j0 > 0 (sin
e if�w(j);j0 = 0 at that time, then �w(j);j0 = 0 forever). At thelatest at this time t, also j0 was 
onne
ted and �j0 stoppedgrowing. Hen
e �j � t � �j0 .I Then
�(j);j metri
 ineq.� 
w(j);j| {z }��j + 
w(j);j0| {z }��j0��j + 
�(j);j0| {z }��j0��j � 3�j = 3�
j 242 / 292



Con
lusionTheoremThe algorithm produ
es a 3-approximation in timeO(m � log(m)), where m = jCj � jF j is the number of edges.State of the art:Theorem (Byrka '07)There is a 1:499-apx for Fa
ility Lo
ation.I The integrality gap for the 
onsidered LP lies in[1:463; 1:499℄.TheoremThere is no polynomial time 1:463-apx for Fa
ility Lo
ationunless NP � DTIME(nO(log log n)). 243 / 292


