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Linear programsLet A 2 Rm�n ; b 2 Rm ;  2 Rn thenmax TxAx � bxi � 0 8i x1
x2 aTi x � biopt. sol.

is alled a linear program. Alternatively one might haveI min instead of maxI no non-negativity xi � 0I Ax = bMore terminologyI onv(fx; yg) := f�x+ (1� �)y j � 2 [0; 1℄gI Set Q � Rn onvex if 8x; y 2 Q : onv(fx; yg) � QI A set P is alled a polyhedron if P = fx 2 Rn j Ax � bgI If P bounded (9M : P � [�M;M ℄n) then P is a polytope. 45 / 292



VertiesLet P = fx 2 Rn j Ax � bg be a polyhedron.De�nitionA point x� 2 P is alled a vertex if there is a  2 Rn suh thatx� is the unique optimum solution of maxfTx j x 2 Pg.Alternative names: basi solution, extreme point.
x1

x2
P x�
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Alternative haraterisationsLemmaLet x� 2 P = fx 2 Rn j Ax � bg. The following statements areequivalentI x� is a vertexI There are no y; z 2 P with (x�; y; z pairwise di�erent) andx� 2 onvfy; zgI There is a linear independent subsystem A0x � b0 (with nonstraints) of Ax � b s.t. fx�g = fx 2 Rn j A0x = b0g.
x1

x2 aTi x � biaTj x � bjP x�
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Not every polyhedron has vertiesExample: The polyhedron P = fx 2 R2 j �x1 + x2 � 1g doesnot have any verties.
x1

x2 �x1 + x2 � 1P
LemmaAny polytope has verties.LemmaAny polyhedron P � Rn with non-negativity onstraintsxi � 0 8i = 1; : : : ; n has verties. 48 / 292



Support of vertex solutionsLemmaLet x� be a vertex ofP = fx 2 Rn j aTj x � bj 8j = 1; : : : ;m;xi � 0 8igThen jfi j x�i > 0gj � m (#non-zero entries � #onstraints).
x1

x2
(0; 0) (34 ; 0)
(0; 12) P = �x 2 R2 j 4x1 + 6x2 � 3x1 � 0;x2 � 0 �PProof: There is a subsystem I; J with jJ j+ jIj = n andfx�g = fx j aTj x = bj 8j 2 J ; xi = 0 8i 2 Ig. HenejIj = n� jJ j � n�m. 49 / 292



Linear programming is doable in polytimeTheoremGiven A 2 Qm�n ; b 2 Qm ;  2 Qn , there is an algorithm whihsolves maxfTx j Ax � bgin time polynomial in n;m and the enoding length of A; b; .The algorithm returns an optimum vertex solution if there isany.I Polynomial here means that the number of bit operations isbounded by a polynomial (Turing model).I Enoding length (= #bits used to enode an objet) forI integer � 2 Z: h�i := dlog2(j�j+ 1)e+ 1.I rational number � = pq 2 Q: h�i := hpi+ hqiI vetor  2 Qn : hi :=Pni=1 hiiI inequality aTx � Æ: hai+ hÆiI matrix A = (aij) 2 Qm�n : hAi :=Pmi=1Pnj=1 haiji 50 / 292



The ellipsoid methodInput: Fulldimensional polytope P � RnOutput: Point in P(1) Find ellipsoid E1 � P with enter z1(2) FOR t = 1; :::;1 DO(3) IF zt 2 P THEN RETURN zt(4) Find hyperplane aTx = Æ through zt suh thatP � fx j aTx < Æg(5) Compute ellipsoid Et+1 � Et \ fx j aTx � Æg withvol(Et+1) = (1� �(1)n )vol(Et)
zt zt+1P

Et Et+1aTx = Æ 51 / 292



The ellipsoid method (2)Problem: Separation Problem for P :I Given: y 2 QnI Find: a 2 Qn with aT y > aTx 8x 2 P (or assert y 2 P ).ya P
Rule of thumbIf one an solve the Separation Problem for P � Rn inpoly-time, then one an solve maxfTx j x 2 Pg eÆiently.Important: The number of inequalities does not play a role.Espeially we an optimize in many ases even if the number ofinequalities is exponential. 52 / 292



TheoremLet P � Rn be a polyhedron that an be desribed asP = fx 2 Rn j Ax � bg with A 2 Qm�n ; b 2 Qm , and let  2 Qnbe an objetive funtion. Let ' be an upper bound onI the enoding length of eah single inequality in Ax � b.I the dimension nI the enoding length of .Suppose one an solve the following problem in time poly('):Separation problem: Given y 2 Qn with enodinglength poly(') as input. Deide, whether y 2 P . If not�nd an a 2 Qn with aT y > aTx 8x 2 P .Then there is an algorithm that yields in time poly(') eitherI x� 2 Qn attaining maxfTx j x 2 Pg (x� will be a vertex ifP has verties)I P emptyI Vetors x; y 2 Qn with x+ �y 2 P 8� � 0 and T y � 1.Here running times are w.r.t. the Turing mahine model. 53 / 292



Weak dualityObservationConsider the LP maxfTx j x 2 Pg withP = fx 2 Rn j Ax � bg. Let y � 0. Then (yTA)x � yT b is afeasible inequality for P (i.e. (yTA)x � yT b 8x 2 P ). In fat, ifyTA = T , then Tx = (yTA)x � yT b 8x 2 PExample: maxfx1 + x2 j x1 + 2x2 � 6; x1 � 2; x1 � x2 � 1gOptimum solution: x� = (2; 2) with Tx� = 4.x1 + 2x2 � 6x1 � x2 � 1 x1 � 2x� x1 + x2 � 133P23 � ( x1 +2x2 � 6)0 � ( x1 � 2)13 � ( x1 �x2 � 1)x1 +x2 � 133 � 4:33 54 / 292



Weak duality (2)Theorem (Weak duality)Let A 2 Rm�n ; b 2 Rm ;  2 Rn . ThenmaxfTx j Ax � bg| {z }(P ) � minfbT y j yTA = T ; y � 0g| {z }(D)given that both systems are feasible.I If (P ) is the primal program, then (D) is the dual programto (P ).I Note: The dual of the dual is the primal.
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Strong dualityTheorem (Strong duality I)Let A 2 Rm�n ; b 2 Rm ;  2 Rn . ThenmaxfTx j Ax � bg = minfbT y j yTA = T ; y � 0ggiven that both systems are feasible.Theorem (Strong duality II)Let A 2 Rm�n ; b 2 Rm ;  2 Rn . ThenmaxfTx j Ax � b; x � 0g = minfbT y j yTA � T ; y � 0ggiven that both systems are feasible. 56 / 292



Hand-waving proof of strong dualityClaimLet x� be optimum solution of maxfTx j Ax � bg. Then thereis a y � 0 with yTA = T and yT b = Tx�.I Let a1; : : : ; am be rows of A.I Let I := fi j aTi x� = big bethe tight inequalities. x� ai1 ai2C�
aTi1x � bi1

aTi2x � bi2
b

bI Suppose for ontradition  =2 fPi aiyi j yi � 0; i 2 Ig =: CI Then there is a � 2 Rn with T� > 0; aTi � � 0 8i 2 I.I Walking in diretion � improves objetive funtion.But x� was optimal. Contradition! 57 / 292



Hand-waving proof of strong dualityClaimLet x� be optimum solution of maxfTx j Ax � bg. Then thereis a y � 0 with yTA = T and yT b = Tx�.I Let a1; : : : ; am be rows of A.I Let I := fi j aTi x� = big bethe tight inequalities. x� ai1 ai2CaTi1x � bi1
aTi2x � bi2
b

bI 9y � 0 : yTA = T and yi = 0 8i =2 I (we only use tightinequalities)yT b�Tx� = yT b�yTAx� = yT (b�Ax�) = mXi=1 yi|{z}=0 if i=2I � (bi � aTi x�)| {z }=0 if i2I = 058 / 292



Complementary SlaknessWarning: Primal and dual are swithed here.Theorem (Complementary slakness)Let x� be a solution for(P ) : minfTx j Ax � b; x � 0gand y� a solution for(D) : maxfbT y j AT y � ; y � 0g:Let ai be the ith row of A and aj be its jth olumn. Then x�and y� are both optimal , both following onditions are trueI Primal omplementary slakness: xj > 0) (aj)T y = jI Dual omplementary slakness: yi > 0) aTi x = bi 59 / 292



Part 9Weighted Vertex Cover
Soure: Approximation Algorithms (Vazirani, Springer Press) 60 / 292



Vertex CoverProblem: Weighted Vertex CoverI Given: Undireted graph G = (V;E), node weights : V ! Q+I Find: Subset U � V suh that every edge is inident to atleast one node in U and Pv2U (v) is minimized.
vertex overConsider the LPminXv2V (v)xvxu + xv � 1 8 (u; v) 2 Exv � 0 8v 2 V 61 / 292



Half-integralityLemmaLet x� be a basi solution of (LP ). Then x�v 2 f0; 12 ; 1g for allv 2 V , i.e. x� is half-integral.I Suppose x� is not half-integral, i.e. not both sets are empty:V+ := nv j 12 < x�v < 1o; V� := nv j 0 < x�v < 12oI It suÆes to show that x� an be written as onvexombination x� = 12y + 12z for 2 di�erent feasible (LP )solutions y; z.
V� 3 v1x�v1 = 0:3 v2 2 V+x�v2 = 0:7 01 0 1x�y z(LP ) xv1

xv2
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Half-integrality (2)I De�neyv := 8><>:x�v + " x�v 2 V+x�v � " x�v 2 V�x�v otherwise and zv := 8><>:x�v � " x�v 2 V+x�v + " x�v 2 V�x�v otherwise
�"�"�" +"+" +0+0V� V+ x�v 2 f0; 12 ; 1g

+"+"+" �"�" +0+0V� V+ x�v 2 f0; 12 ; 1g
I Tight edges (u; v) 2 E : x�v + x�u = 1 drawn solidI Constraints satis�ed by y; z for " > 0 small enough. 63 / 292



The AlgorithmAlgorithm:(1) Compute an optimum basi solution x� to (LP )(2) Choose vertex over U := fv j x�v > 0gTheoremU is a vertex over of ost � 2 � OPTf .Proof.Clearly U is feasible. FurthermoreXv2U (v) =Xv2V dx�ve(v) � 2Xv2V x�v(v) = 2 � OPTf :
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InapproximabilityTheorem (Khot & Regev '03)There is no polynomial time (2� ")-apx unless Unique GamesConjeture is false.Unique Games ConjetureFor all " > 0, there is a prime p := p(") suh that the followingproblem is NP-hard:I Given: Equations xi �p aijxj for some (i; j) pairsI Distinguish:I Yes: max satis�able fration � 1� "I No: max satis�able fration � "Example: x1 �13 4 � x3x2 �13 9 � x1: : : 65 / 292



Part 7Set Cover via LPs
Soure: Approximation Algorithms (Vazirani, Springer Press) 38 / 292



A linear program for SetCoverIntrodue deision variablesxi = (1 take set Si0 otherwiseFormulate SetCover as integer linear program:min mXi=1 (Si)xi (ILP )Xi:j2Si xi � 1 8j 2 Uxi 2 f0; 1g 8iI Cheapest Set Cover solution = best (ILP ) solution 39 / 292



The LP relaxationWe relax this to a linear programmin mXi=1 (Si)xi (LP )Xi:j2Si xi � 1 8j 2 U0 � xi � 1 8iI (LP ) an be solved in polynomial time (see next hapter)I Let OPTf be value of optimum solutionI Of ourse OPTf � OPTI Integrality gap�(n) := supinstanes jIj=n OPT (I)OPTf (I) 40 / 292



The algorithmAlgorithm:(1) Solve (LP )! x� opt. frational solution(2) (Randomized rounding:) FOR i = 1; : : : ;m DO(3) Pik Si with probability minfln(n) � x�i ; 1g(4) (Repairing:) FOR every not overed element j 2 U pik theheapest set ontaining j
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AnalysisTheoremE[APX℄ � (ln(n) + 1) � OPTfConsider an element j 2 U :Pr[j not overed in (2)℄ = Yi:j2SiPr[Si not piked in (2)℄� Yi:j2Si(1� ln(n) � x�i )1+y�ey� Yi:j2Si e� ln(n)�x�i= e� ln(n)��1 due to LP ineq.z }| {Pi:j2Si x�i� e� ln(n) = 1n 42 / 292



Analysis (2)I Cost of randomized rounding:E[ost in (2)℄ = mXi=1 Pr[Si piked in (2)℄ � (Si)� mXi=1 ln(n)x�i (Si) = ln(n) �OPTfI Cost of repairing step: In step (3), we pik n times withprob. � 1n a set of ost � OPTf . HeneE[ost of step (3)℄ � n � 1n � OPTf = OPTfI By linearity of expetationE[APX℄ = E[ost in (2)℄+E[ost in (3)℄ � (ln(n)+1)�OPTf43 / 292


