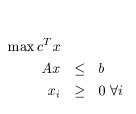
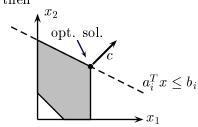
PART 8 INSERTION: LINEAR PROGRAMMING

Source: Geometric Algorithms and Combinatorial Optimization (Grötschel, Lovász, Schrijver)

Linear programs

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$ then





is called a linear program. Alternatively one might have

- min instead of max
- ightharpoonup no non-negativity $x_i \geq 0$
- Ax = b

More terminology

- $\operatorname{conv}(\{x, y\}) := \{\lambda x + (1 \lambda)y \mid \lambda \in [0, 1]\}$
- ▶ Set $Q \subseteq \mathbb{R}^n$ convex if $\forall x, y \in Q$: conv $(\{x, y\}) \subseteq Q$
- ▶ A set P is called a polyhedron if $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
- ▶ If P bounded $(\exists M : P \subseteq [-M, M]^n)$ then P is a polytope.

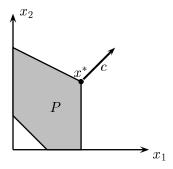
Vertices

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a polyhedron.

Definition

A point $x^* \in P$ is called a vertex if there is a $c \in \mathbb{R}^n$ such that x^* is the unique optimum solution of $\max\{c^T x \mid x \in P\}$.

Alternative names: basic solution, extreme point.

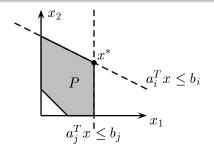


Alternative characterisations

Lemma

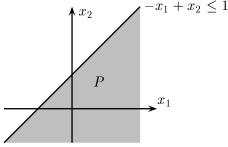
Let $x^* \in P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$. The following statements are equivalent

- \triangleright x^* is a vertex
- ▶ There are no $y, z \in P$ with $(x^*, y, z \text{ pairwise different})$ and $x^* \in conv\{y, z\}$
- ▶ There is a linear independent subsystem $A'x \leq b'$ (with n constraints) of $Ax \leq b$ s.t. $\{x^*\} = \{x \in \mathbb{R}^n \mid A'x = b'\}$.



Not every polyhedron has vertices

Example: The polyhedron $P = \{x \in \mathbb{R}^2 \mid -x_1 + x_2 \leq 1\}$ does not have any vertices.



Lemma

Any polytope has vertices.

Lemma

Any polyhedron $P \subseteq \mathbb{R}^n$ with non-negativity constraints $x_i > 0 \ \forall i = 1, ..., n$ has vertices.

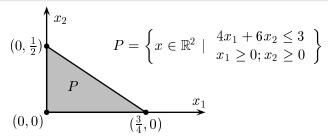
Support of vertex solutions

Lemma

Let x^* be a vertex of

$$P = \{x \in \mathbb{R}^n \mid a_j^T x \le b_j \ \forall j = 1, \dots, m; x_i \ge 0 \ \forall i\}$$

Then $|\{i \mid x_i^* > 0\}| \le m \ (\#non\text{-}zero \ entries \le \#constraints).$



Proof: There is a subsystem I, J with |J| + |I| = n and $\{x^*\} = \{x \mid a_j^T x = b_j \ \forall j \in J; \ x_i = 0 \ \forall i \in I\}$. Hence $|I| = n - |J| \ge n - m$.

Linear programming is doable in polytime

Theorem

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, there is an algorithm which solves

$$\max\{c^T x \mid Ax \le b\}$$

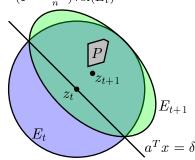
in time polynomial in n, m and the encoding length of A, b, c. The algorithm returns an optimum vertex solution if there is any.

- ▶ Polynomial here means that the number of bit operations is bounded by a polynomial (Turing model).
- ► Encoding length (= #bits used to encode an object) for
 - integer $\alpha \in \mathbb{Z}$: $\langle \alpha \rangle := \lceil \log_2(|\alpha| + 1) \rceil + 1$.
 - ▶ rational number $\alpha = \frac{p}{q} \in \mathbb{Q}$: $\langle \alpha \rangle := \langle p \rangle + \langle q \rangle$
 - vector $c \in \mathbb{Q}^n$: $\langle c \rangle := \sum_{i=1}^n \langle c_i \rangle$
 - inequality $a^T x \leq \delta$: $\langle a \rangle + \langle \delta \rangle$
 - ▶ matrix $A = (a_{ij}) \in \mathbb{Q}^{m \times n}$: $\langle A \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} \langle a_{ij} \rangle$

The ellipsoid method

Input: Fulldimensional polytope $P \subseteq \mathbb{R}^n$ **Output:** Point in P

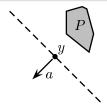
- (1) Find ellipsoid $E_1 \supseteq P$ with center z_1
- (2) FOR $t = 1, ..., \infty$ DO
 - (3) IF $z_t \in P$ THEN RETURN z_t
 - (4) Find hyperplane $a^T x = \delta$ through z_t such that $P \subseteq \{x \mid a^T x < \delta\}$
 - (5) Compute ellipsoid $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \le \delta\}$ with $\operatorname{vol}(E_{t+1}) = (1 \frac{\Theta(1)}{n}) \operatorname{vol}(E_t)$



The ellipsoid method (2)

Problem: Separation Problem for P:

- ▶ Given: $y \in \mathbb{Q}^n$
- ▶ Find: $a \in \mathbb{Q}^n$ with $a^T y > a^T x \ \forall x \in P$ (or assert $y \in P$).



Rule of thumb

If one can solve the Separation Problem for $P \subseteq \mathbb{R}^n$ in poly-time, then one can solve $\max\{c^T x \mid x \in P\}$ efficiently.

Important: The number of inequalities does <u>not</u> play a role. Especially we can optimize in many cases even if the number of inequalities is exponential.

52/292

Theorem

Let $P \subseteq \mathbb{R}^n$ be a polyhedron that can be described as $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ with $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$, and let $c \in \mathbb{Q}^n$ be an objective function. Let φ be an upper bound on

- ▶ the encoding length of each <u>single</u> inequality in $Ax \leq b$.
- ightharpoonup the dimension n
- \blacktriangleright the encoding length of c.

Suppose one can solve the following problem in time $poly(\varphi)$:

Separation problem: Given $y \in \mathbb{Q}^n$ with encoding length $poly(\varphi)$ as input. Decide, whether $y \in P$. If not find an $a \in \mathbb{Q}^n$ with $a^T y > a^T x \ \forall x \in P$.

Then there is an algorithm that yields in time $poly(\varphi)$ either

- ▶ $x^* \in \mathbb{Q}^n$ attaining $\max\{c^T x \mid x \in P\}$ (x^* will be a vertex if P has vertices)
- \triangleright P empty
- ▶ Vectors $x, y \in \mathbb{Q}^n$ with $x + \lambda y \in P \ \forall \lambda \geq 0 \ and \ c^T y \geq 1$.

Here running times are w.r.t. the Turing machine model.

Weak duality

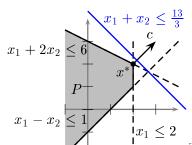
Observation

Consider the LP $\max\{c^Tx\mid x\in P\}$ with $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$. Let $y\geq \mathbf{0}$. Then $(y^TA)x\leq y^Tb$ is a feasible inequality for P (i.e. $(y^TA)x\leq y^Tb\;\forall x\in P$). In fact, if $y^TA=c^T$, then

$$c^T x = (y^T A)x \le y^T b \quad \forall x \in P$$

Example: $\max\{x_1 + x_2 \mid x_1 + 2x_2 \le 6, \ x_1 \le 2, \ x_1 - x_2 \le 1\}$ Optimum solution: $x^* = (2, 2)$ with $c^T x^* = 4$.

$$\frac{\frac{2}{3} \cdot (x_1 +2x_2 \leq 6)}{0 \cdot (x_1 \leq 2)}
\frac{\frac{1}{3} \cdot (x_1 -x_2 \leq 1)}{x_1 +x_2 \leq \frac{13}{3} \approx 4.33}$$



Weak duality (2)

Theorem (Weak duality)

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\underbrace{\max\{c^Tx\mid Ax\leq b\}}_{(P)}\leq \underbrace{\min\{b^Ty\mid y^TA=c^T;\ y\geq \mathbf{0}\}}_{(D)}$$

given that both systems are feasible.

- ▶ If (P) is the primal program, then (D) is the dual program to (P).
- ▶ Note: The dual of the dual is the primal.

Strong duality

Theorem (Strong duality I)

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\max\{c^T x \mid Ax \le b\} = \min\{b^T y \mid y^T A = c^T; \ y \ge \mathbf{0}\}$$

given that both systems are feasible.

Theorem (Strong duality II)

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\max\{c^T x \mid Ax \le b, x \ge \mathbf{0}\} = \min\{b^T y \mid y^T A \ge c^T, y \ge \mathbf{0}\}\$$

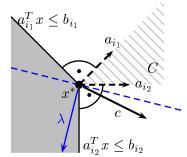
given that both systems are feasible.

Hand-waving proof of strong duality

Claim

Let x^* be optimum solution of $\max\{c^Tx \mid Ax \leq b\}$. Then there is a $y \geq \mathbf{0}$ with $y^TA = c^T$ and $y^Tb = c^Tx^*$.

- ▶ Let a_1, \ldots, a_m be rows of A.
- Let $I := \{i \mid a_i^T x^* = b_i\}$ be the tight inequalities.



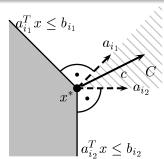
- ▶ Suppose for contradiction $c \notin \{\sum_i a_i y_i \mid y_i \geq 0, i \in I\} =: C$
- ▶ Then there is a $\lambda \in \mathbb{R}^n$ with $c^T \lambda > 0$, $a_i^T \lambda \leq 0 \ \forall i \in I$.
- Walking in direction λ improves objective function. But x^* was optimal. Contradiction!

Hand-waving proof of strong duality

Claim

Let x^* be optimum solution of $\max\{c^Tx \mid Ax \leq b\}$. Then there is a $y \geq \mathbf{0}$ with $y^TA = c^T$ and $y^Tb = c^Tx^*$.

- ▶ Let a_1, \ldots, a_m be rows of A.
- Let $I := \{i \mid a_i^T x^* = b_i\}$ be the tight inequalities.



▶ $\exists y \geq \mathbf{0} : y^T A = c^T \text{ and } y_i = 0 \ \forall i \notin I \text{ (we only use tight inequalities)}$

inequalities)
$$y^{T}b - c^{T}x^{*} = y^{T}b - y^{T}Ax^{*} = y^{T}(b - Ax^{*}) = \sum_{i=1}^{m} \underbrace{y_{i}}_{=0 \text{ if } i \notin I} \underbrace{(b_{i} - a_{i}^{T}x^{*})}_{=0 \text{ if } i \in I} = 0$$

Complementary Slackness

Warning: Primal and dual are switched here.

Theorem (Complementary slackness)

Let x^* be a solution for

$$(P): \min\{c^T x \mid Ax \ge b, x \ge \mathbf{0}\}\$$

and y^* a solution for

$$(D): \max\{b^T y \mid A^T y \le c, y \ge \mathbf{0}\}.$$

Let a_i be the ith row of A and a^j be its jth column. Then x^* and y^* are both optimal \Leftrightarrow both following conditions are true

- ▶ Primal complementary slackness: $x_j > 0 \Rightarrow (a^j)^T y = c_j$
- ▶ Dual complementary slackness: $y_i > 0 \Rightarrow a_i^T x = b_i$

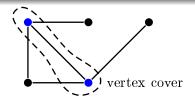
Part 9 Weighted Vertex Cover

Source: Approximation Algorithms (Vazirani, Springer Press)

Vertex Cover

Problem: Weighted Vertex Cover

- ▶ Given: Undirected graph G = (V, E), node weights $c: V \to \mathbb{Q}_+$
- ▶ Find: Subset $U \subseteq V$ such that every edge is incident to at least one node in U and $\sum_{v \in U} c(v)$ is minimized.



Consider the LP

$$\min \sum_{v \in V} c(v) x_v$$

$$x_u + x_v \geq 1 \quad \forall \ (u, v) \in E$$

$$x_v \geq 0 \quad \forall v \in V$$

Half-integrality

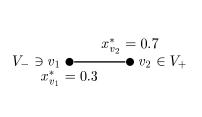
Lemma

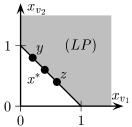
Let x^* be a basic solution of (LP). Then $x_v^* \in \{0, \frac{1}{2}, 1\}$ for all $v \in V$, i.e. x^* is <u>half-integral</u>.

▶ Suppose x^* is not half-integral, i.e. not both sets are empty:

$$V_{+} := \left\{ v \mid \frac{1}{2} < x_{v}^{*} < 1 \right\}, V_{-} := \left\{ v \mid 0 < x_{v}^{*} < \frac{1}{2} \right\}$$

▶ It suffices to show that x^* can be written as convex combination $x^* = \frac{1}{2}y + \frac{1}{2}z$ for 2 different feasible (LP) solutions y, z.

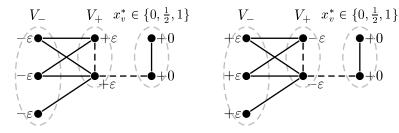




Half-integrality (2)

Define

$$y_v := \begin{cases} x_v^* + \varepsilon & x_v^* \in V_+ \\ x_v^* - \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases} \quad \text{and} \quad z_v := \begin{cases} x_v^* - \varepsilon & x_v^* \in V_+ \\ x_v^* + \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases}$$



- ▶ Tight edges $(u, v) \in E : x_v^* + x_u^* = 1$ drawn solid
- ▶ Constraints satisfied by y, z for $\varepsilon > 0$ small enough.

The Algorithm

Algorithm:

- (1) Compute an optimum basic solution x^* to (LP)
- (2) Choose vertex cover $U := \{v \mid x_v^* > 0\}$

Theorem

U is a vertex cover of $cost \leq 2 \cdot OPT_f$.

Proof.

Clearly U is feasible. Furthermore

$$\sum_{v \in U} c(v) = \sum_{v \in V} \lceil x_v^* \rceil c(v) \le 2 \sum_{v \in V} x_v^* c(v) = 2 \cdot OPT_f.$$

Inapproximability

Theorem (Khot & Regev '03)

There is no polynomial time $(2 - \varepsilon)$ -apx unless Unique Games Conjecture is false.

Unique Games Conjecture

For all $\varepsilon > 0$, there is a prime $p := p(\varepsilon)$ such that the following problem is **NP**-hard:

- ▶ GIVEN: Equations $x_i \equiv_p a_{ij} x_j$ for some (i, j) pairs
- ▶ Distinguish:
 - ▶ Yes: max satisfiable fraction $\geq 1 \varepsilon$
 - ▶ No: max satisfiable fraction $\leq \varepsilon$

Example:

$$x_1 \equiv_{13} 4 \cdot x_3$$

$$x_2 \equiv_{13} 9 \cdot x_1$$

· · 65 / 292

PART 7 SET COVER VIA LPS

Source: Approximation Algorithms (Vazirani, Springer Press)

A linear program for SetCover

Introduce decision variables

$$x_i = \begin{cases} 1 & \text{take set } S_i \\ 0 & \text{otherwise} \end{cases}$$

Formulate SetCover as integer linear program:

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (ILP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$x_i \in \{0,1\} \quad \forall i$$

▶ Cheapest Set Cover solution = best (ILP) solution

The LP relaxation

We relax this to a linear program

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (LP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$0 \leq x_i \leq 1 \quad \forall i$$

- ightharpoonup (LP) can be solved in polynomial time (see next chapter)
- ▶ Let OPT_f be value of optimum solution
- ▶ Of course $OPT_f \leq OPT$
- ► Integrality gap

$$\alpha(n) := \sup_{\text{instances } |\mathcal{I}| = n} \frac{OPT(\mathcal{I})}{OPT_f(\mathcal{I})}$$

The algorithm

Algorithm:

- (1) Solve $(LP) \to x^*$ opt. fractional solution
- (2) (Randomized rounding:) FOR i = 1, ..., m DO (3) Pick S_i with probability min $\{\ln(n) \cdot x_i^*, 1\}$
- (4) (Repairing:) FOR every not covered element $j \in U$ pick the cheapest set containing j

Analysis

Theorem

$$E[APX] \le (\ln(n) + 1) \cdot OPT_f$$

Consider an element $j \in U$:

$$\begin{array}{ll} \Pr[j \text{ not covered in } (2)] & = & \displaystyle \prod_{i:j \in S_i} \Pr[S_i \text{ not picked in } (2)] \\ & \leq & \displaystyle \prod_{i:j \in S_i} (1 - \ln(n) \cdot x_i^*) \\ & \stackrel{1+y \leq e^y}{\leq} & \displaystyle \prod_{i:j \in S_i} e^{-\ln(n) \cdot x_i^*} \\ & = & e^{-\ln(n) \cdot \sum_{i:j \in S_i} x_i^*} \\ & \leq & e^{-\ln(n)} = \frac{1}{n} \end{array}$$

Analysis (2)

▶ Cost of randomized rounding:

$$E[\text{cost in } (2)] = \sum_{i=1}^{m} \Pr[S_i \text{ picked in } (2)] \cdot c(S_i)$$

$$\leq \sum_{i=1}^{m} \ln(n) x_i^* c(S_i) = \ln(n) \cdot OPT_f$$

▶ Cost of repairing step: In step (3), we pick n times with prob. $\leq \frac{1}{n}$ a set of cost $\leq OPT_f$. Hence

$$E[\text{cost of step }(3)] \le n \cdot \frac{1}{n} \cdot OPT_f = OPT_f$$

▶ By linearity of expectation

$$E[APX] = E[\text{cost in } (2)] + E[\text{cost in } (3)] \le (\ln(n) + 1) \cdot OPT_f$$