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INSERTION: LINEAR PROGRAMMING
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Linear programs

Let A € R™ " h e R™ ¢ € R then
)

~

~d opt. sol.

max ¢’ x C
~
Az < b Ssoaln < b
~
x; 2>
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is called a linear program. Alternatively one might have

» min instead of max
» no non-negativity z; > 0
> Az =0
More terminology
» conv({z,y}) :={dz+ (1 - Ny | Xxe0,1]}
» Set Q@ C R" convex if Vz,y € @ : conv({z,y}) CQ
» A set P is called a polyhedron if P = {z € R" | Az < b}
» If P bounded (3M : P C [-M, M]") then P is a polytope.




Vertices
Let P = {z € R" | Az < b} be a polyhedron.

Definition

A point z* € P is called a vertex if there is a ¢ € R" such that
o* is the unique optimum solution of max{c’'z | z € P}.

Alternative names: basic solution, extreme point.
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Alternative characterisations

Lemma
Let x* € P ={z € R" | Az < b}. The following statements are
equivalent
> z* is a vertex
» There are no y,z € P with (z*,y,z pairwise different) and
z* € conviy, z}

» There is a linear independent subsystem A'x <V (with n
constraints) of Az <b s.t. {x*} ={x e R* | A'lz =V'}.
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Not every polyhedron has vertices

Example: The polyhedron P = {x € R? | —z1 + x5 < 1} does

not have any vertices.

Lo —x1+x92 <1
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Any polytope has vertices.

Lemma

Lemma

Any polyhedron P C R"™ with non-negativity constraints
z; > 0Vi=1,...,n has vertices.




Support of vertex solutions

Lemma
Let z* be a vertex of

P={zeR" |aJTx§ijj:1,...,m;xiZOW}

Then |{i | z7 > 0} < m (#non-zero entries < #constraints).
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<
(0, 3) P={x€R2| 4‘T1+6‘T2—3}

z1 > 0522 >0

I

0.0 (3.0
Proof: There is a subsystem I, J with |J| 4+ |I| = n and
{a*} ={z| aJTLE =b;Vj € J; x; =0Vi € I}. Hence
lI| =n—|J| >n—m.



Linear programming is doable in polytime

Theorem
Given A € Q""" b € Q™,c € Q", there is an algorithm which

solves
max{c z | Az < b}

in time polynomial in n,m and the encoding length of A, b, c.
The algorithm returns an optimum vertex solution if there is
any.

» Polynomial here means that the number of bit operations is

bounded by a polynomial (Turing model).
» Encoding length (= #bits used to encode an object) for

> integer a € Z: (a) := [log,(Ja] +1)] + 1.
rational number a = % €Q: (o) =)+ (9
vector ¢ € Q" (¢) :== Y i, (¢)
inequality a”z < 6: (a) + (0)
(4) = X7 S0 (aig)

vVvyVvVvyy

matrix A = (a;;) € Qm*":




The ellipsoid method

Input: Fulldimensional polytope P C R"”
Output: Point in P
(1) Find ellipsoid E; D P with center z;
(2) FOR t=1,...,00 DO
(3) IF z, € P THEN RETURN 2z
(4) Find hyperplane a’z = § through z; such that
P C{z|alz <6}
(5) Compute ellipsoid Eyy1 D E; N {z | a’z < §} with
vol(Ep11) = (1 — 28)vol( Et

Zt+1

E;



The ellipsoid method (2)

Problem: SEPARATION PROBLEM FOR P:
» Given: y € Q"
» Find: a € Q" with oy > o’z Vo € P (or assert y € P).
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Rule of thumb

If one can solve the SEPARATION PROBLEM for P C R"” in
poly-time, then one can solve max{c’z | z € P} efficiently.

Important: The number of inequalities does not play a role.
Especially we can optimize in many cases even if the number of

inequalities is exponential.



Theorem

Let P CR" be a polyhedron that can be described as

P={z eR"| Az < b} with A € Q" ", b€ Q", and let c € Q"
be an objective function. Let ¢ be an upper bound on

> the encoding length of each single inequality in Az < b.
> the dimension n

» the encoding length of c.
Suppose one can solve the following problem in time poly(p):
Separation problem: Given y € Q" with encoding

length poly(p) as input. Decide, whether y € P. If not
find an a € Q* with a’y > o’z Yz € P.

Then there is an algorithm that yields in time poly(yp) either

» z* € Q" attaining max{c'z | z € P} (z* will be a vertez if
P has vertices)

> P empty

» Vectors z,y € Q" with x + Xy € PYA >0 and ¢’y > 1.

Here running times are w.r.t. the Turing machine model.




Weak duality

Observation
Consider the LP max{c'z | z € P} with
P={z€R"| Az <b}. Let y > 0. Then (y"A)z < yTbis a
feasible inequality for P (i.e. (y' A)z < y''bVz € P). In fact, if
yTA = c"', then

e=@wA)z <y'> VzeP

Example: max{z; +z2 | 21 + 222 <6, 1 <2, 1 —x9 < 1}
Optimum solution: z* = (2,2) with ¢/ z* = 4.
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Weak duality (2)

Theorem (Weak duality)
Let Ac R™ ™ b e R™ ce R". Then
max{c’z | Az < b} < min{d'y |yTA=c"; y >0}

-~

(P) (D)

given that both systems are feasible.

» If (P) is the primal program, then (D) is the dual program
to (P).
» Note: The dual of the dual is the primal.




Strong duality

Theorem (Strong duality I)
Let Ac R™ ™ b e R™ ce R". Then

max{c' z | Az < b} =min{bTy | yT A =c"; y >0}

given that both systems are feasible.

Theorem (Strong duality II)
Let Ac R™"™ be R™ ceR" Then

max{clz | Az < b,z > 0} = min{bTy | yTA > L,y > 0}

given that both systems are feasible.




Hand-waving proof of strong duality

Claim

Let #* be optimum solution of max{c’z | Az < b}. Then there
isay >0 with y"A =¢" and y'b = c'z*.
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Let aq,...,a.;, be rows of A.
Let I :={i | alz* = b;} be
the tight inequalities.

a,;f';x < b,
Suppose for contradiction ¢ ¢ {>°, a;y; | y; > 0,i € I} =:C
Then there is a A € R* with ¢!'XA >0, al A < 0Vi € I.
Walking in direction A improves objective function.

But z* was optimal. Contradiction!
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Hand-waving proof of strong duality

Claim

Let #* be optimum solution of max{c’z | Az < b}. Then there
isay>0withy’A=c"and y'b=c'z

» Let ai,...,a,; berows of A.
» Let I:= {i | al'2* = b;} be
the tight inequalities.

» Jy>0:y"A=c" and y; =0 Vi ¢ I (we only use tight
inequalities)
yTb—cla* = yTb—yT Ax* = o7 (b—Az™) Z (b —alz*) =0

_ _/—/
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Complementary Slackness
Warning: Primal and dual are switched here.

Theorem (Complementary slackness)

Let x* be a solution for
(P) : min{c'z | Az > b,z > 0}
and y* a solution for
(D) : max{bTy | ATy < ¢,y > 0}.

Let a; be the ith row of A and o’ be its jth column. Then z*
and y* are both optimal < both following conditions are true

» Primal complementary slackness: z; > 0= (a?)Ty = ¢;

» Dual complementary slackness: y; > 0 = aZT:I; =0b;




PART 9
WEIGHTED VERTEX COVER

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)
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Vertex Cover

Problem: WEIGHTED VERTEX COVER
» Given: Undirected graph G = (V, F), node weights
c:V = Qy
» Find: Subset U C V such that every edge is incident to at
least one node in U and ) ;s ¢(v) is minimized.
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Consider the LP

1 V(u,v) €F
0 YveV




Half-integrality

Lemma
Let x* be a basic solution of (LP). Then z} € {0, 1 5,1} for all
v €V, i.e. £¥ is half-integral.

» Suppose z* is not half-integral, i.e. not both sets are empty:
1 1
V+::{v|§<xz<1},v_ ::{v|0<xz<§}

» It suffices to show that ac can be written as convex
combination z* = 3y + 1z for 2 different feasible (LP)

solutions v, z.

A Loy
1 (LP)
x, = 0.7 !
V_osuv1 @ @ Uy € V+ z* %
i =0.3 . o0




Half-integrality (2)

» Define
Ty, +e xy,€Vy Ty —€
Yp:=<Q @, —€ x,€V_ and  z, =z +¢€
xy otherwise xy
V- V+ iL“: € {05 %71} V_ V+ iL“:
—E€®, @—c

?—r»e o0 +ce® :
|
] >

W
\f

» Tight edges (u,v) € E : z} + z}; = 1 drawn solid

» Constraints satisfied by y, z for € > 0 small enough.

$:€V+
xy € V_

otherwise

€{0,3,1}
-0




The Algorithm
Algorithm:

(1) Compute an optimum basic solution z* to (LP)
(2) Choose vertex cover U := {v | z; > 0}

Theorem
U is a vertex cover of cost <2-OPTy.

Proof.
Clearly U is feasible. Furthermore

Z c(v) = Z [z ]c(v) <2 Z z,c(v) =2 - OPTy.

velU veV veV




Inapproximability

Theorem (Khot & Regev '03)

There is no polynomial time (2 — €)-apz unless Unique Games
Conjecture 1s false.

Unique Games Conjecture

For all € > 0, there is a prime p := p(e) such that the following
problem is NP-hard:

» GIVEN: Equations z; =, a;jz; for some (i, j) pairs
» DISTINGUISH:

» YES: max satisfiable fraction > 1 —¢
» NoO: max satisfiable fraction < e

Example:
Ty =13 4733

9 =13 9-:131




PART 7
SET COVER VIA LPs

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)
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A linear program for SETCOVER

Introduce decision variables

1 take set S;
€Tr, =
' 0 otherwise

Formulate SETCOVER as integer linear program:
m
min Z c(Si)z; (ILP)
i=1
oz > 1 VjeU

1:JES;
z € {0,1} Vi

» Cheapest SET COVER solution = best (ILP) solution




The LP relaxation

We relax this to a linear program

» (LP) can be solved in polynomial time (see next chapter)
» Let OPTy be value of optimum solution

» Of course OPTy < OPT

» Integrality gap

a(n) = sup OPT(I)
‘ instances |Z|=n OPTf( )




The algorithm

Algorithm:

(1) Solve (LP) — z* opt. fractional solution

(2) (Randomized rounding:) FOR i=1,...,m DO
(3) Pick S; with probability min{ln(n) - z¥,1}

(4) (Repairing:) FOR every not covered element j € U pick the
cheapest set containing j



Analysis

Theorem

E[APX] < (In(n) + 1) - OPTy

Consider an element 5 € U:

Pr[j not covered in (2)]

IN

1+y<e¥

IA

H Pr[S; not picked in (2)]
:jES;

[I @)

i:jES;

H e—ln(n)-x;‘
i:jES;
>1 due to LP ineq.
—
*
Ok > ijes; T

e~ In(n) _

SEES



Analysis (2)
» Cost of randomized rounding;:
Elcost in (2)] = Y Pr[S; picked in (2)] - ¢(S;)
=1
zm
< ) In(n)zie(S;) = In(n) - OPTy
=1

» Cost of repairing step: In step (3), we pick n times with
prob. < % a set of cost < OPT}. Hence

Elcost of step (3)] <n-—-OPTy = OPTy

S|k

» By linearity of expectation

E[APX] = E|cost in (2)]4+E[cost in (3)] < (In(n)+1)-OPTy

O



