# PART 8 INSERTION: LINEAR PROGRAMMING

Source: Geometric Algorithms and Combinatorial Optimization (Grötschel, Lovász, Schrijver)

## Linear programs

Let  $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$  then





is called a linear program. Alternatively one might have

- min instead of max
- ightharpoonup no non-negativity  $x_i \geq 0$
- Ax = b

More terminology

- $\operatorname{conv}(\{x, y\}) := \{\lambda x + (1 \lambda)y \mid \lambda \in [0, 1]\}$
- ▶ Set  $Q \subseteq \mathbb{R}^n$  convex if  $\forall x, y \in Q$  : conv $(\{x, y\}) \subseteq Q$
- ▶ A set P is called a polyhedron if  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
- ▶ If P bounded  $(\exists M : P \subseteq [-M, M]^n)$  then P is a polytope.

#### Vertices

Let  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$  be a polyhedron.

#### Definition

A point  $x^* \in P$  is called a vertex if there is a  $c \in \mathbb{R}^n$  such that  $x^*$  is the unique optimum solution of  $\max\{c^T x \mid x \in P\}$ .

Alternative names: basic solution, extreme point.



## Alternative characterisations

#### Lemma

Let  $x^* \in P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ . The following statements are equivalent

- $\triangleright$   $x^*$  is a vertex
- ▶ There are no  $y, z \in P$  with  $(x^*, y, z \text{ pairwise different})$  and  $x^* \in conv\{y, z\}$
- ▶ There is a linear independent subsystem  $A'x \leq b'$  (with n constraints) of  $Ax \leq b$  s.t.  $\{x^*\} = \{x \in \mathbb{R}^n \mid A'x = b'\}$ .



## Not every polyhedron has vertices

**Example:** The polyhedron  $P = \{x \in \mathbb{R}^2 \mid -x_1 + x_2 \leq 1\}$  does not have any vertices.



#### Lemma

Any polytope has vertices.

#### Lemma

Any polyhedron  $P \subseteq \mathbb{R}^n$  with non-negativity constraints  $x_i > 0 \ \forall i = 1, ..., n$  has vertices.

## Support of vertex solutions

#### Lemma

Let  $x^*$  be a vertex of

$$P = \{x \in \mathbb{R}^n \mid a_j^T x \le b_j \ \forall j = 1, \dots, m; x_i \ge 0 \ \forall i\}$$

Then  $|\{i \mid x_i^* > 0\}| \le m \ (\#non\text{-}zero \ entries \le \#constraints).$ 



**Proof:** There is a subsystem I, J with |J| + |I| = n and  $\{x^*\} = \{x \mid a_j^T x = b_j \ \forall j \in J; \ x_i = 0 \ \forall i \in I\}$ . Hence  $|I| = n - |J| \ge n - m$ .

# Linear programming is doable in polytime

#### Theorem

Given  $A \in \mathbb{Q}^{m \times n}$ ,  $b \in \mathbb{Q}^m$ ,  $c \in \mathbb{Q}^n$ , there is an algorithm which solves

$$\max\{c^T x \mid Ax \le b\}$$

in time polynomial in n, m and the encoding length of A, b, c. The algorithm returns an optimum vertex solution if there is any.

- ▶ Polynomial here means that the number of bit operations is bounded by a polynomial (Turing model).
- ► Encoding length (= #bits used to encode an object) for
  - integer  $\alpha \in \mathbb{Z}$ :  $\langle \alpha \rangle := \lceil \log_2(|\alpha| + 1) \rceil + 1$ .
  - ▶ rational number  $\alpha = \frac{p}{q} \in \mathbb{Q}$ :  $\langle \alpha \rangle := \langle p \rangle + \langle q \rangle$
  - vector  $c \in \mathbb{Q}^n$ :  $\langle c \rangle := \sum_{i=1}^n \langle c_i \rangle$
  - inequality  $a^T x \leq \delta$ :  $\langle a \rangle + \langle \delta \rangle$
  - ▶ matrix  $A = (a_{ij}) \in \mathbb{Q}^{m \times n}$ :  $\langle A \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} \langle a_{ij} \rangle$

## The ellipsoid method

**Input:** Fulldimensional polytope  $P \subseteq \mathbb{R}^n$ **Output:** Point in P

- (1) Find ellipsoid  $E_1 \supseteq P$  with center  $z_1$
- (2) FOR  $t = 1, ..., \infty$  DO
  - (3) IF  $z_t \in P$  THEN RETURN  $z_t$
  - (4) Find hyperplane  $a^T x = \delta$  through  $z_t$  such that  $P \subseteq \{x \mid a^T x < \delta\}$
  - (5) Compute ellipsoid  $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \le \delta\}$  with  $\operatorname{vol}(E_{t+1}) = (1 \frac{\Theta(1)}{n}) \operatorname{vol}(E_t)$



# The ellipsoid method (2)

### **Problem:** Separation Problem for P:

- ▶ Given:  $y \in \mathbb{Q}^n$
- ▶ Find:  $a \in \mathbb{Q}^n$  with  $a^T y > a^T x \ \forall x \in P$  (or assert  $y \in P$ ).



#### Rule of thumb

If one can solve the Separation Problem for  $P \subseteq \mathbb{R}^n$  in poly-time, then one can solve  $\max\{c^T x \mid x \in P\}$  efficiently.

**Important:** The number of inequalities does <u>not</u> play a role. Especially we can optimize in many cases even if the number of inequalities is exponential.

52/292

#### Theorem

Let  $P \subseteq \mathbb{R}^n$  be a polyhedron that can be described as  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$  with  $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$ , and let  $c \in \mathbb{Q}^n$  be an objective function. Let  $\varphi$  be an upper bound on

- ▶ the encoding length of each <u>single</u> inequality in  $Ax \leq b$ .
- ightharpoonup the dimension n
- $\blacktriangleright$  the encoding length of c.

Suppose one can solve the following problem in time  $poly(\varphi)$ :

**Separation problem:** Given  $y \in \mathbb{Q}^n$  with encoding length  $poly(\varphi)$  as input. Decide, whether  $y \in P$ . If not find an  $a \in \mathbb{Q}^n$  with  $a^T y > a^T x \ \forall x \in P$ .

Then there is an algorithm that yields in time  $poly(\varphi)$  either

- ▶  $x^* \in \mathbb{Q}^n$  attaining  $\max\{c^T x \mid x \in P\}$  ( $x^*$  will be a vertex if P has vertices)
- $\triangleright$  P empty
- ▶ Vectors  $x, y \in \mathbb{Q}^n$  with  $x + \lambda y \in P \ \forall \lambda \geq 0 \ and \ c^T y \geq 1$ .

Here running times are w.r.t. the Turing machine model.

# Weak duality

#### Observation

Consider the LP  $\max\{c^Tx\mid x\in P\}$  with  $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$ . Let  $y\geq \mathbf{0}$ . Then  $(y^TA)x\leq y^Tb$  is a feasible inequality for P (i.e.  $(y^TA)x\leq y^Tb\;\forall x\in P$ ). In fact, if  $y^TA=c^T$ , then

$$c^T x = (y^T A)x \le y^T b \quad \forall x \in P$$

**Example:**  $\max\{x_1 + x_2 \mid x_1 + 2x_2 \le 6, \ x_1 \le 2, \ x_1 - x_2 \le 1\}$  Optimum solution:  $x^* = (2, 2)$  with  $c^T x^* = 4$ .

$$\frac{\frac{2}{3} \cdot ( x_1 +2x_2 \leq 6)}{0 \cdot ( x_1 \leq 2)} 
\frac{\frac{1}{3} \cdot ( x_1 -x_2 \leq 1)}{x_1 +x_2 \leq \frac{13}{3} \approx 4.33}$$



# Weak duality (2)

## Theorem (Weak duality)

Let  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$ . Then

$$\underbrace{\max\{c^Tx\mid Ax\leq b\}}_{(P)}\leq \underbrace{\min\{b^Ty\mid y^TA=c^T;\ y\geq \mathbf{0}\}}_{(D)}$$

given that both systems are feasible.

- ▶ If (P) is the primal program, then (D) is the dual program to (P).
- ▶ Note: The dual of the dual is the primal.

# Strong duality

## Theorem (Strong duality I)

Let 
$$A \in \mathbb{R}^{m \times n}$$
,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$ . Then

$$\max\{c^T x \mid Ax \le b\} = \min\{b^T y \mid y^T A = c^T; \ y \ge \mathbf{0}\}$$

given that both systems are feasible.

## Theorem (Strong duality II)

Let 
$$A \in \mathbb{R}^{m \times n}$$
,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$ . Then

$$\max\{c^T x \mid Ax \le b, x \ge \mathbf{0}\} = \min\{b^T y \mid y^T A \ge c^T, y \ge \mathbf{0}\}\$$

given that both systems are feasible.

# Hand-waving proof of strong duality

#### Claim

Let  $x^*$  be optimum solution of  $\max\{c^Tx \mid Ax \leq b\}$ . Then there is a  $y \geq \mathbf{0}$  with  $y^TA = c^T$  and  $y^Tb = c^Tx^*$ .

- ▶ Let  $a_1, \ldots, a_m$  be rows of A.
- Let  $I := \{i \mid a_i^T x^* = b_i\}$  be the tight inequalities.



- ▶ Suppose for contradiction  $c \notin \{\sum_i a_i y_i \mid y_i \geq 0, i \in I\} =: C$
- ▶ Then there is a  $\lambda \in \mathbb{R}^n$  with  $c^T \lambda > 0$ ,  $a_i^T \lambda \leq 0 \ \forall i \in I$ .
- Walking in direction  $\lambda$  improves objective function. But  $x^*$  was optimal. Contradiction!

# Hand-waving proof of strong duality

#### Claim

Let  $x^*$  be optimum solution of  $\max\{c^Tx \mid Ax \leq b\}$ . Then there is a  $y \geq \mathbf{0}$  with  $y^TA = c^T$  and  $y^Tb = c^Tx^*$ .

- ▶ Let  $a_1, \ldots, a_m$  be rows of A.
- Let  $I := \{i \mid a_i^T x^* = b_i\}$  be the tight inequalities.



▶  $\exists y \geq \mathbf{0} : y^T A = c^T \text{ and } y_i = 0 \ \forall i \notin I \text{ (we only use tight inequalities)}$ 

inequalities)
$$y^{T}b - c^{T}x^{*} = y^{T}b - y^{T}Ax^{*} = y^{T}(b - Ax^{*}) = \sum_{i=1}^{m} \underbrace{y_{i}}_{=0 \text{ if } i \notin I} \underbrace{(b_{i} - a_{i}^{T}x^{*})}_{=0 \text{ if } i \in I} = 0$$

## Complementary Slackness

Warning: Primal and dual are switched here.

## Theorem (Complementary slackness)

Let  $x^*$  be a solution for

$$(P): \min\{c^T x \mid Ax \ge b, x \ge \mathbf{0}\}\$$

and  $y^*$  a solution for

$$(D): \max\{b^T y \mid A^T y \le c, y \ge \mathbf{0}\}.$$

Let  $a_i$  be the ith row of A and  $a^j$  be its jth column. Then  $x^*$  and  $y^*$  are both optimal  $\Leftrightarrow$  both following conditions are true

- ▶ Primal complementary slackness:  $x_j > 0 \Rightarrow (a^j)^T y = c_j$
- ▶ Dual complementary slackness:  $y_i > 0 \Rightarrow a_i^T x = b_i$

# Part 9 Weighted Vertex Cover

Source: Approximation Algorithms (Vazirani, Springer Press)

### Vertex Cover

#### Problem: Weighted Vertex Cover

- ▶ Given: Undirected graph G = (V, E), node weights  $c: V \to \mathbb{Q}_+$
- ▶ Find: Subset  $U \subseteq V$  such that every edge is incident to at least one node in U and  $\sum_{v \in U} c(v)$  is minimized.



#### Consider the LP

$$\min \sum_{v \in V} c(v) x_v$$
 
$$x_u + x_v \geq 1 \quad \forall \ (u, v) \in E$$
 
$$x_v \geq 0 \quad \forall v \in V$$

# Half-integrality

#### Lemma

Let  $x^*$  be a basic solution of (LP). Then  $x_v^* \in \{0, \frac{1}{2}, 1\}$  for all  $v \in V$ , i.e.  $x^*$  is <u>half-integral</u>.

▶ Suppose  $x^*$  is not half-integral, i.e. not both sets are empty:

$$V_{+} := \left\{ v \mid \frac{1}{2} < x_{v}^{*} < 1 \right\}, V_{-} := \left\{ v \mid 0 < x_{v}^{*} < \frac{1}{2} \right\}$$

▶ It suffices to show that  $x^*$  can be written as convex combination  $x^* = \frac{1}{2}y + \frac{1}{2}z$  for 2 different feasible (LP) solutions y, z.





# Half-integrality (2)

Define

$$y_v := \begin{cases} x_v^* + \varepsilon & x_v^* \in V_+ \\ x_v^* - \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases} \quad \text{and} \quad z_v := \begin{cases} x_v^* - \varepsilon & x_v^* \in V_+ \\ x_v^* + \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases}$$



- ▶ Tight edges  $(u, v) \in E : x_v^* + x_u^* = 1$  drawn solid
- ▶ Constraints satisfied by y, z for  $\varepsilon > 0$  small enough.

## The Algorithm

## Algorithm:

- (1) Compute an optimum basic solution  $x^*$  to (LP)
- (2) Choose vertex cover  $U := \{v \mid x_v^* > 0\}$

#### Theorem

U is a vertex cover of  $cost \leq 2 \cdot OPT_f$ .

#### Proof.

Clearly U is feasible. Furthermore

$$\sum_{v \in U} c(v) = \sum_{v \in V} \lceil x_v^* \rceil c(v) \le 2 \sum_{v \in V} x_v^* c(v) = 2 \cdot OPT_f.$$



# Inapproximability

## Theorem (Khot & Regev '03)

There is no polynomial time  $(2 - \varepsilon)$ -apx unless Unique Games Conjecture is false.

## Unique Games Conjecture

For all  $\varepsilon > 0$ , there is a prime  $p := p(\varepsilon)$  such that the following problem is **NP**-hard:

- ▶ GIVEN: Equations  $x_i \equiv_p a_{ij} x_j$  for some (i, j) pairs
- ▶ Distinguish:
  - ▶ Yes: max satisfiable fraction  $\geq 1 \varepsilon$
  - ▶ No: max satisfiable fraction  $\leq \varepsilon$

### Example:

$$x_1 \equiv_{13} 4 \cdot x_3$$

$$x_2 \equiv_{13} 9 \cdot x_1$$

· · 65 / 292

# PART 7 SET COVER VIA LPS

Source: Approximation Algorithms (Vazirani, Springer Press)

# A linear program for SetCover

Introduce decision variables

$$x_i = \begin{cases} 1 & \text{take set } S_i \\ 0 & \text{otherwise} \end{cases}$$

Formulate SetCover as integer linear program:

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (ILP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$x_i \in \{0,1\} \quad \forall i$$

▶ Cheapest Set Cover solution = best (ILP) solution

### The LP relaxation

We relax this to a linear program

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (LP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$0 \leq x_i \leq 1 \quad \forall i$$

- ightharpoonup (LP) can be solved in polynomial time (see next chapter)
- ▶ Let  $OPT_f$  be value of optimum solution
- ▶ Of course  $OPT_f \leq OPT$
- ► Integrality gap

$$\alpha(n) := \sup_{\text{instances } |\mathcal{I}| = n} \frac{OPT(\mathcal{I})}{OPT_f(\mathcal{I})}$$

## The algorithm

### Algorithm:

- (1) Solve  $(LP) \to x^*$  opt. fractional solution
- (2) (Randomized rounding:) FOR i = 1, ..., m DO (3) Pick  $S_i$  with probability min $\{\ln(n) \cdot x_i^*, 1\}$
- (4) (Repairing:) FOR every not covered element  $j \in U$  pick the cheapest set containing j

# **Analysis**

#### Theorem

$$E[APX] \le (\ln(n) + 1) \cdot OPT_f$$

Consider an element  $j \in U$ :

$$\begin{array}{ll} \Pr[j \text{ not covered in } (2)] & = & \displaystyle \prod_{i:j \in S_i} \Pr[S_i \text{ not picked in } (2)] \\ & \leq & \displaystyle \prod_{i:j \in S_i} (1 - \ln(n) \cdot x_i^*) \\ & \stackrel{1+y \leq e^y}{\leq} & \displaystyle \prod_{i:j \in S_i} e^{-\ln(n) \cdot x_i^*} \\ & = & e^{-\ln(n) \cdot \sum_{i:j \in S_i} x_i^*} \\ & \leq & e^{-\ln(n)} = \frac{1}{n} \end{array}$$

# Analysis (2)

▶ Cost of randomized rounding:

$$E[\text{cost in } (2)] = \sum_{i=1}^{m} \Pr[S_i \text{ picked in } (2)] \cdot c(S_i)$$

$$\leq \sum_{i=1}^{m} \ln(n) x_i^* c(S_i) = \ln(n) \cdot OPT_f$$

▶ Cost of repairing step: In step (3), we pick n times with prob.  $\leq \frac{1}{n}$  a set of cost  $\leq OPT_f$ . Hence

$$E[\text{cost of step }(3)] \le n \cdot \frac{1}{n} \cdot OPT_f = OPT_f$$

▶ By linearity of expectation

$$E[APX] = E[\text{cost in } (2)] + E[\text{cost in } (3)] \le (\ln(n) + 1) \cdot OPT_f$$